Supplementary material for the paper: Local stationarity and
time-inhomogeneous Markov chains

Lionel Truquet *f

In this notes, we provide the proofs of the results given in the paper as well as additional
examples of locally stationary Markov chains. For the proofs, the number of the section is already
given in the paper.

1 Proof of Theorem 1

We remind the reader that for a Markov kernel R on (E,B(E)) and p,v € P(E), ||uR — vR| 7y <
c(R) - |u = v|rv, where ¢(R) = sup(, ,ycp |02 R — 6y R[|7v € [0,1]. Then, under our assumptions,
the application T' : P(E) — P(E) defined by T'(1) = pQ) is contracting and the existence and
uniqueness of an invariant probability 7, easily follows from the fixed point theorem in a complete
metric space.

We next check the first condition of Definition 1. The result is shown by induction. For j =1,
we have from assumption A1,

|70 = TollTy < HWUQum - ﬂqumHTV + ||77ng - 7TvQUmHTV
< rllmy = mllry + sup [162Q%" — 0Q%" ||l7v
fAS

Since for two Markov kernels R and R and p, v € P(E), we have
iR~ vRliry < sup e — 6. Rz + e (R) 1~ vlizv,
xe

we deduce from assumption A2 that sup,cp [|6,Q) — 6.Q7'||7v < mLju — v|. This leads to the
inequality |7y, —7y||7v < mL(1—7)"tu—v| which gives the result for j = 1. If the continuity condi-
tion holds true for j — 1, we note that m, ; (dz1,...,dxj—1) = 7y j—1 (dz1,...,dxj—1) Qu (zj-1,dx})
and ||y j — 7o j|l7v < supep [|02Qu—02Qul|7v + ||Tuj—1 — Mo j—1||7v, which leads to the continuity
of u + m, ;. This justifies Condition 1 of Definition 1. Finally we prove the bound announced
for ||7r,(€n]) — my,j|l7v. Note that this bound automatically implies Condition 2 of Definition 1. For
n>k>m, weset Ry = Qi—mt1Qr-m+2 - - Qr. From Assumption A2, we have

k
S
sup [0 R — 6, Q0 lrv <L fu— 2.
eck s=k—m+1
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Now for j = 1, we have

Im” = mullzy < w2 R — 2, @ lzv + I, Q1 — muQi iz
k
$ (n)
< L Z ‘u - ﬁ‘ +rm = Ty
s=k—m+1
Using the fact that is s <0, |u — s/n| > |u|, we deduce that

k—fm

(n) o s
I~y < LY 0 Y ‘u—ﬁ

=0  s=k—(l+1)m+1

t+1)m—1
< LmZET u—— + LZ Z h.
=0 h=~fm

which gives the result for j = 1. Next, using the same argument as for the continuity of the
finite-dimensional distributions, we have

k+j
") — mullzy < Lu— +

]+\ 7 | = mugallry.

Hence the result easily follows by induction.[]

2 An additional result for Section 2.3

In this section, we give a useful result for controlling the variance in the nonparametric kernel
estimation of some expectations of finite-state Markov chains. We remind that K : R — Ry
denotes a probability density, supported on [—1, 1] and of bounded variation. For b = b, € (0,1),

we set _
1 u—>

an< 5 )

ei(u) = _

ue(0,1], £<i<n

and

}Alu = Z ei(u)f (Xn,if€+17 s 7X”vi) :

=L
The next proposition gives a uniform control of the variance part iLu — EiLu

Proposition 6. Suppose that Assumptions A1-A2 hold. Then, if b — 0 and nb'*¢ — oo for some

€ >0,
- - V1
sup |hy — Ehy| = Op ( ogn) .
uwe[0,1] vnb




Proof of Proposition 6. We set Y;,; = f (Xy,i—¢+1,...,X5,). First, note that the triangular
L<i<n 18 ¢—mixing (and then a—mixing) with ¢,(j) < CN’pj_ﬁ where C is a positive
constant. We have 0,1] = U I, where k is the integer part of 1/b I = ((s — 1)b sb] for
1<s<kand Iy = (kb 1. Weset S = 0andif ¢ <i < n, ™ = 1, 2" where
Z§") =Y,s —EY,, Then for / <j<j+k <n, we have

array (1)

j+k
Sz < ejlw) S| + gl - SV + Z i) — i (u)] - |51
=] 1=j

C//
— max ‘Si(n)‘.
nb j—1<i<j+k

IN

This gives the bound

n
(n) (n)
max Zei(u)Zi < max max Z ei(u)Z;
el i 1<ssk uel, n(s—2)b<i<n(s+1)b
C//
< ma. max ’Si(n) .
nb 2<s<k+1n(s 2)b—1<i<n(s+1)b

We will use the exponential inequality for strong mixing sequences given in Rio (1999), Theorem
6.1 (see also Rio (2013), Theorem 6.1). This inequality guarantees that for any integer ¢, we have

P max ‘SW < Gexp _Llog 1+Kﬁ +Mnbp—q, (1)
n(s—2)b—1<i<n(s+1)b| * | = - 24| f oo nb A

where F,G, K, M are three positive real numbers not depending on n and s and A > q||f|lco. We
have k = O (bil) and setting ¢ ~ Vb and \ = N+y/nblog n, we have for \' large enough

Vlogn
- v N>
P( max [ ei(u)z™] > FN _ (1 _vmb o)
uel0,1] [ nb bnite  by/log(n)

Then the result follows from the bandwidth conditions.(J

3 Proof of the results of Section 2

3.1 Proof of Proposition 1
Using the Markov property, we have

¢n(j) < max sup [[E(f(Xnit;) | Xni) = E(f (X)) lloos
1<isn—jo<f<1
where for a random variable Y, ||Y||oo denotes its infinite norm. We first consider ¢ > 0 such that
a=2mLe+r < 1. Assume first that n > % In the proof of Theorem 1, we have shown that if for
m <k <nand Ry = Qr-m+1 - Qx,

k
sup [10: R — 0,Q%rv <L | < mLe.

zel s=k—m+1




Then, from Assumption A1l and the triangular inequality, we get

Sup ||5:ka,m - 5yRk:,mHTV < a.
zyel

Now if 7 = tm + s for two positive integers t, s, we get
16, 4 ; Qr—itr - Qr — W;EZQM Qv < .

We easily deduce the bound on ¢,, by taking the infinite norm for the left-hand term of the previous
inequality. Now, if n < ™, one can use the bound ¢,(j) < 1. Setting p = a'/™ this leads to the

result with an appropriate choice of C', e.g C = max {pl_%,ofl}ﬂ

3.2 Proof of Corollary 1
From the inequality
102 Qi = 0,Qu lrv = 1= 3 Q' (@, 2) A Qi (y,2) < 1 |E| - inf Q' (),
zeE ’

assumption Al is satisfied as soon as inf,c(o 1] (z,y)e B2 Q7 (x,y) > 0. From aperiodicity and irre-
ducibility, it is well known that for each u € [0, 1],

My = inf{k: >1: min_ QF(z,y) > O} < 0.
(z,y)eE?

By continuity of the application u — @, the sets O, = {v € [0,1] : Q" > 0} are open subsets
of [0,1]. Using a compactness argument, the interval [0, 1] can be covered by finitely many O,,
say Ou,,...,0,. Then Assumption A1l is satisfied with m = max;<;<qm,,. Assumption A2 is
automatically satisfied. Then Theorem 1 and Proposition 1 apply.[]

3.3 Asymptotic properties for finite-state Markov chains

We will prove the following result.

Theorem 5. Suppose that Assumptions A1-A2 hold and that for a given ¢ > 0, b — 0 and
nblte — .

1. For (x,y) € E?, we have

(@) — mu()| + | B2 @) ol 2
s o) = m o+ P2 0w —0 ) @)
and
sup |myu(z) — Emy(z)| = M
S [Fule) B >—O< N ) )
o |0 () - Efu2(@ )| _ log(n)
uE[OIi)l] Qul:y) Bty () ‘ O( V/nb )

S



2. For (u,x) € (0,1) x E, the vector (\/ nb [fry(z) — Efru(x)]) . is asymptotically Gaussian with
Te

mean 0 and covariance E&l) : E x E — R defined by

0 = / K2 (@)de - |Tu(0) + 3 () + Tu(3)) |
j>1

where FU(j):B,y = WU(ZU)Q{L(%?J) — mu(2)mu(y)-
3. For (u,z,y) € (0,1) x E?, the vector

A E'ﬁ'u,2($7 y)
ICTES o

is asymptotically Gaussian with mean 0 and covariance ¥ : B2 x E? — R defined by

2.% X - T
S () = HEEERE g - Q] e

Proof of Theorem 5

Proof of point 1. For the control of the bias, note that

n—1

Efy2(x,y) — mu2(z,y) = ei(u) |:7T§Z) (x,y) — mu2(z, y)} .

=1

Since e;(u) = 0 if |u —i/n| > b, Theorem 1 ensures that
. 1
sup [Ba(o,0) ~ muale)] =0 (b4 1) =00).
u€e(0,1] n

By summation on y, we deduce the first bound and using the fact that min,e 1 mu(z) > 0, we

deduce that max,cp 1 ﬁ(x) = Op(1) and the second bound follows.

For the variance terms, we use Proposition 6 which ensures the first bound as well as max,¢[o 1
Op(1). This gives also the second bound.[I

| %o ()

Proof of point 2. The proof is a simple consequence of Proposition 5 (2.) given in the paper.
Indeed, from the proof of Corollary 1 of the paper, it is shown that there exists a positive integer
m such that ming yepmin,cp 1) @y (z,y) > 0. Using the uniform continuity of the application
u — @y, one can check that all the assumptions of Theorem 4 are satisfied by choosing € > 0 small
enough, V =1 and V constant. Then setting Zni = > ,cp Azlyx, ;=¢) for some real numbers
Az, ¢ € E| the result follows directly from Proposition 7 and the Cramér-Wold device.[]



Proof of point 3. Let

Zn(z,y) = A\/% ZDn,i(xay)

u(®) =2

3

where
Dn,i(ajv y) = el(u) [H{Xnyi_lzw,Xnyi:y} - Q%(x’ y)]l{Xn,l_lzm}]

is a martingale increment bounded by (nb)~! (up to a constant). We set 0, ;(z,y) = 1 if X,,,-1 =

z,X,; = y and 0 otherwise and 51(“) (z,y) is defined in the same way but with the stationary
approximation. Using the classical Lindeberg central limit theorem for martingales, the sum

vnb Z?;ll [Dni(%,9)], ,cp is asymptotically a Gaussian vector with mean 0 and variance matrix
3} defined by

> ((@,y), ( "y))

= lim sz ei(u)?Cov [%i(x, Y) = Qi (@ 9)ix, ,_1=a} Oni(2' ¢) — Qs (2, y/)ﬂ{xn,i,lzx/}]
=2

= T}LH;o nb Z 61 COV |:6( )(LL’, y) = Qu (.%, y)]l{Xi,l(u):x}v 6Z(U) (‘/L‘/v y/) = Qu (xlv y/)]l{Xi,l(u):ac’}}

= [ K2z P () = 2 Xa(w) = ) [Lymy — Qule' )] L

In the previous equalities, we have used Theorem 1, the continuity properties of the transition
matrix and the limits

n—1
! —i/n g (u—i/n )2
nlzr%omZizld )= [ ,}L%MZK< )= [ wera

We deduce that the vector [Z,(z,y)] syek 18 asymptotically Gaussian with mean zero and covari-

(2)

ance matrix X,

Then it remains to show that for each (z,y) € E?,

Y 1 ]I{Xnﬂ;l:x}Q%(x’y) Eﬁu,?(xay) _
Vnb [; ei(u) @) " TEnG) |~ op(1). @

To show (4), we use the decomposition

[Z( L= @ (0y) Efru,z(x,y)]

£t Ful) E#,(2)

= o ) (1 1= = T2 @)) - (Qs (2,9) = Qulz.p)

() =
+ VY an (@) (Q(e,y) - Quiz,y)) m
1=2 ” ”
_ A () — Tu ()



Since the kernel K has a compact support and u +— @Q,(z,y) is Lipschitz continuous, we have
B, =0 (\/ nbb). Moreover, using covariance inequalities, we have Var (4,,) = O (bz). Then (4)

follows from 7, (z) — my(z) = Op (%) and #(x) = Op(1). The proof of point 3 is now complete.

nb
U

4 Geometric ergodicity result for Section 3

Proposition 7. Assume that assumptions B1-B3 hold true.

1. For all u € [0,1], the Markov chain of transition Q. has a unique invariant probability dis-
tribution denoted by m,. Moreover for all initial probability distribution p € P,(E), we have
form=mj+s

Wy (nQyy, mi) < Cr?

)

([ dto.anputa)) "

where kg = supyepo.1) (f d(x,xo)pﬂu(dx))l/p < 0.
2. If u,v € [0, 1], we have
Colu — | 1 . .
Wy (my, my) < 4 mCT" ko + jz_;) Clrim—j—-1)1,

; 1/p
where r1(j) = SuPyefo 1] <f d(zx, xo)prL(xo,dx» < 0.

Proof of Proposition 7 We first show that the quantities x;1(j) are finite. We set ¢; =
Pyl 1/p ; ;
(f (1+d(z,x)) Qo(m,da:)) . If 7 > 1, we have, using Lemma 4 (2.),

Wy (620 @ 8202%)
Wi (820 Q808 Q) + Wi (32008 Qur 0025
= W, (000Ql " 82y @) + Calul“gjn,

We obtain

IN

Wp (%Qi, 5:coQ%> <y Cigs 1. (5)
s=0

Using Lemma 3 with the function f(z) =1+ d(z,z0), we get

J—1

k1(J) < qj + Co chst—s—l-
5=0



1. The existence and uniqueness of an invariant probability m,, € P, easily follows from the fixed
point theorem for a contracting application in the complete metric space (Pp, W)).
Before proving the geometric convergence, let us show that the quantity o is finite. We have,
using Lemma 4,

Wy(mu,mo) < Wy (muQy' m0Qy') + Wy (moQy's m0Qg")

1/p
< Wy (7, m0) </Wp 02 Q% 530@6”)770(dx)> .

Using (5) and Lemma 4, we have

Wy (0:Qy",0:Q0") < W (62Q, 020 Q') + Wy (020 Q' 020 Q5") + Wi (620", 020 Q')
m—1
< 2rd(z,20) + C2 Y Cam—s-1.
s=0

From the previous bound, we easily deduce the existence of a real number D > 0, not
depending on u, such that W,(m,, m) < %. Using Lemma 3, we get

D 1/p
kg < T— + </ d(%ﬂfo)pﬁo(dl“)) )
— T

which is finite.
Now, the geometric convergence is a consequence of the inequality

(/ dte.aoputan) .

Finally, let v be an invariant probability for P, (not necessarily in P,). Let f : B — R
be an element of Cy(F) (the set of real-valued, continuous and bounded functions defined
on FE). Since convergence in Wasserstein metric implies weak convergence, we have from
the geometric ergodicity lim,, o Q1 f(z) = m,f for all z € E. Hence, using the Lebesgue
theorem, we have

Wy (NQZ»WUQZ) < Ciserp(Naﬂ'u) < Cisrj

vf = vQnf = /y<dx)sz(x) Somaf
which shows the unicity of the invariant measure.

2. Proceeding as for the previous point, we have

1/p
Wy (Tu, ) < rWp(my, ) (/ W (0.Qy' 5vam)7rU(da:)) . (6)

However,

1/p
W, (0,07, 0,07) < CuWy (6@, 85,071 + Colu — o ( [+ 0P @, dy>)
CiW, (8:Q0 1, 6,Q 1) + Colu — v| (k1 (m — 1) + O d(w, 29)) -

A



We deduce that

m—1

Wy (5:Q, 0:Q) < Colu—v| | Y Cri(m — j — 1) + mC" ' d(x, xo)
7=0

Reporting the last bound in (6), we get the result.[]

5 Proof of Theorem 2

1. We show the result by induction and first consider the case j = 1. For k < n, let Qi ,, be the
probability kernel Q x—m+1 --- Q. We have

W, (ngn),ﬂu> = W, (Wé@kamaﬂuQum>

< Wy (7 Qs 70 @) + Wy (nf, Q0 maQ)
1/p
< W, (w,i”)m, (/Wp (62 Qs 5,Q) ™ m(d@) .

From Lemma 5, we have

k—s

n

u —

m—1 1/p
Wy (6:Qram, 02Q5) < > CiCh [/ (1 +d(y,20))" 62Q k=mta - - Qk—s—l(dy):|
s=0
First we note that from our assumptions and using Lemma 3 with the function f(z) =

1+ d(z,x0), we have

[6:QufP1VP < [0 Quf?)P + Crd(w, z0) < (1+ w1(1) + C1) f(2),

where £ is defined in Proposition 2 in the paper. Then we get sup,¢(o,1) 02Qu.f? < CYfP(z),
where C5 = 1+ k1(1) + C;. This yields to the inequality

m—1
W (52 Qo 5200 < 3 G100 |u = B2 )
s=0
Then we obtain
m—1
W, (71'](C )7 ) <rw, <7Tk, o T ) + Z CiC C’g,,nfsfl U — E (W,(Ji)mfp)l/p.
s=0

Then the result will easily follow if we prove that sup, <, 7r,(€n) fP < oo. Setting ¢ =
W, <7T]E:n),ﬂ'ﬁ > and Cy = Z;n;()l(s + )05 05057571 and using our previous inequality,

we have
)+ ()

04 C’4
<r + n) Ch—m +1W), (Wk;m,ﬂ'%) + ;(1 + Ra).

IN

Ck

IN




Then, if ng is such that for all n > ny, 7“%-% < 1, the last inequality, Proposition 2 and Lemma

3 guarantee that sup,,,, 1<x<n W,(Cn)fp is finite and only depends on p, d, r, C1, Co, k1(1), ..., k1(m), Ka.

n) o)
Moreover if n < ng, we have (W,i )fp) : < (Cy+ 1) (Wofp)l/p. This concludes the proof

for the case j = 1.

(n)

2. Now for j > 2, we define a coupling of <7Tk j,ﬂuJ‘) as follows. First we consider an optimal

coupling Fikj@l of (W](CZ-)_PWUJ’_I), and for each (z,y) € E?, we define an optimal coupling

A:(Dk;j)u of (5$Q i (5yQu). From Villani (2009), Corollary 5.22, it is possible to choose this

optimal coupling such that the application (z,y) — Aiky J) ,, is measurable. Now we define

Fq(fj’-n)(dﬂjl,dyl,. ..,d:Uj,dyj) = A(k’n) . (dl‘j,dyj) ( ) (dxladyh~~7d$j—17dyj—1)'

Tj—1,Y5-1,7,U u,j—1

Then we easily deduce that

Wp (W]E;n])uﬂ-uj) <WII;) <7T](§J) 19 TTu,j—1 /W z] 1Q1€+J, Yi— 1Qu> u,j )1 (d«rlydyl)--wdxj—l)dyj—l)-

Since
k+
W, (5@71@@, 6yj71Qu> < Crd(zj1,yj-1) + Co [1 +d(yj—1,z0)] |u — Tj
This leads to
n n k+J
W (ﬂ](cj),’ﬁu]) < (1 + Cl)Wp (ﬂ—l(c,j)fb’]r“,j—l) + 02(1 + HQ) u — T

The results follows by a finite induction.

Finally, note that Condition 1 of Definition 1 of the paper follows from induction and the
point 2 of Proposition 2, because using the same type of arguments, we have

Wy (70,55 Tuj) < (14 C1)Wp (my -1, Tuj—1) + Ca(1 + K2) [u — | .

The proof of the Theorem is now complete.[]

6 Local stationarity for the functional time series example

For a square integrable function f, we remind that E ‘ fo s)dBy(s ‘ = fo s5)2ds. Here we set

zo = 0. For a borelian set A and x € FE we set

Qu(z,A) =P </ a(-, s)x(s)ds + /U(',S)dBl(S) € A) )

Using the inequality (a + b)? < 2a® + 2b%, we have
2 1 1 2
/HszéggQu(dy) < [ au (t,s)x(s)ds dt+/ E / ou(t,s)dBi(s) dt]
< [ 2 (t, s)dtds||z|* + / / ou(t, s dsdt]

10



From the integrability assumptions, we get B1. Next, using Cauchy-Schwarz inequality,

1 1 2
W2 (5,00, 8,Qu) = A [;%@wxﬂ@—y@»u dt
1 1
< a2 (t, s)dsdt - ||z — y]|>.
0 0

Assumption B2 follows from the assumption made on the kernel a. Finally, using similar arguments,
we have
W3 (0:Qus 0:Qu) < 2C%u — v (1 + |l2||)

and B3 is also satisfied.

7 Mixing conditions for Markov chains contracting in the Wasser-
stein metric

For the Markov chains introduced in Section 3 of the paper, the 7—mixing coefficients introduced
and studied in Dedecker and Prieur (2004) are adpated to our triangular arrays. When this co-
efficient, which has been introduced for Banach spaces F, has a suitable decay, standard limit
theorems can be obtained for the random sequence under study. The advantage of this mixing
coefficient is to not require regularity conditions on the noise distributions of dynamical systems.
We refer the reader to Dedecker and Prieur (2004) for many examples of random sequences for
which this coefficient can be easily controlled. For our locally stationary Markov chains with con-
tracting Markov kernels in Wasserstein metrics, the 7—dependence is adapted and will replace the
¢—mixing coefficient of Section 2.

In the sequel, we denote by A;1(E) the set of 1—Lipschitz functions from F to R. If j <n —1
and 1 <7 <n—j, we set

U = sup{[E [f (Xnit1 Xni)] —ELf Xnii)ll 1 f € Ai(E)},

the 7, —mixing coefficient for the sequence (Xp 1), .., is defined by

(j) = sup E {U-(n)} .

7
1<i<n—j 7

Note that, if )Zn,iﬂv denotes a copy of X, ;1;, independent from X, ;, we have the bound
E U] < Bd (Xnirss Knits) -

This bound is particularly useful for bounding the coefficients 7,,. Let us also note that by the
Kantorovitz-Rubinstein theorem (see Villani (2009), Remark 5.16), the random variable Ui(,?') is the
Wasserstein distance of order 1 between the probability distribution of X, ;4; and the conditional
distribution Xn,i+1 ‘Xn,z

The following assumption, which strengthens the first part of Assumption B2 in the case m > 2
and p = 1, will be needed. In the sequel, for a positive real number €, we set

Im(€) = {(u1,...,um) €[0,1]" : |u; —uj| <e, 1<i#j<m}.

11



B4 There exists a positive real number e such that for all (u,ug,...,u,) € [0,1]™F! satisfying
|u; — ul < € for 1 < i < m, we have

Wl (63:QU1 T Qum7 5yQu1 e Qum) S Td(i[f, y)7

where m and r are defined in assumption B2.

Note. Since the Wasserstein distances satisfy Wy < W), for p > 1, if we prove B4 but using W),
instead of Wj and if there exists C; > 1 such that for all (z,y,u) € E? x [0,1], Wy (62Qu, §,Qu) <
Cyd(z,y), then Assumption B2 will be satisfied. We will mainly proceed like this in our examples.

Proposition 8. Suppose that Assumptions B1 — B2 and B4 hold. Then there exist C > 0, only

depending on m,r,C1, € such that A
() < crilm,

Note. Let us remind that Proposition 8 implies a geometric decrease for the covariances. This is
a consequence of the following property. If f : E — R is measurable and bounded and g : £ — R
is measurable and ¢(g)—Lipschitz, we have

Cov (f (Xn,i) 9 (Xn,its) < I flloc - 6(9) - Tn(4)-

Proof of Proposition 8 We first consider the case n > m/e. Now if k is an integer such that
k+m — 1 < n, note that assumption B4 entails that

Wi (4Qs -+ Quancs ,vQu -+ Qs ) < TWa(1,0), (7)

where the probability measures p and v have both a finite first moment. If j = mt+ s, we get from
(7) and Assumption B2,

7a(j) < CirtsupE [Wl ((5)(7”.,711(”))} < 2supEd (X, z0) - Crt.
1€EZ iE€EZ

We have seen in the proof of Theorem 3 that sup,,cz ;<,, Ed (Xy,i, 20) < 0.
Now assume that n < m/e. If j < n, we have

Tn(j) < 2supEd (X, 3, 20) - C{n/e.
i€EZL

Now if j > n, we have since (X, ;) <o is stationary with transition kernel Qq,

7(j) < 2supEd (X4, 20) - O/ [50],
€7

This leads to the result for p = r'/™ and an appropriate choice of C' > 0.0J
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8 Poisson GARCH process

Stationary Poisson GARCH processes are widely used for analyzing series of counts. See Fokianos
et al. (2009) for the properties and the statistical inference of such processes. In this paper, we
consider a time-varying version of this model. More precisely, we assume that the conditional
distribution Yy (u)|o (Yy—;(u),j > 1) is a Poisson distribution of parameter \;(u) given recursively
by

Ae(u) = y(u) + a(u)Yi_1(u) + B(u) \p—1(u),

where v, «, 8 are positive Lipschitz functions such that

a = max [a(u) + B(u)] < 1.
u€(0,1]
To construct a Markov chain, we consider Xy (u) = (Yj(u), \p(u))’. On E = R2, we consider
the distance d(x,y) = |x1 — y1| + |z2 — 32| and 29 = 0, p = 1. To check B4, we consider the
following coupling of (0,Qu; - - Quy, OyQu, - - - Qu,,) Which is also used in Fokianos et al. (2009).
Let N, ..., N be i.i.d Poisson processes of intensity 1. We set A0,z) = x9, Y(0,2) = x; and
for 1 <i<m,
A, x) = y(u;) + a(u)Y (i — 1,2) + B(u)) A — 1, z),

Y (i, 2) = Ny
The same recursive construction is done with a starting point y # x. Using independence and
stationarity of the increments of a Poisson process, we have

EY(i,z) =Y (i, y)| = EAG z) — A(,y)] -
Using this inequality recursively for 1 < ¢ < m combined with the triangular inequality, we get

Wl (535Qu1 e Quma 5yQu1 T Qum)

<
< 2a™d(z,y).

If m is large enough, we have r = 2a™ < 1 which entails B4. Assumptions B2 and B3 follows
in the same way, using our coupling with a Poisson process. Note also that by the Kantorovitch
duality, we have for all function f € Ay (E),
]
+ — ’
n

/ fdr{™ — / fdr,

where C' > 0 is the constant given in Theorem 3. In particular if f only depends on the first
coordinate, takes the value 1 at point j € N and vanishes outside [j — 0.5, 5 + 0.5], we get a bound

for the difference 77,(:) (7) — mu(y)-

k
u_i
n

SC[

9 Extension of the contraction condition in Wasserstein metric
for higher order Markov processes

In this section,we give an extension of our result to Markov sequences of order ¢ > 1 and taking
values in the Polish space (F,d). Let {S,:u € [0,1]} be a family of probability kernels from
(E1,B(E?)) to (E,B(E)). The two following assumptions will be used.
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H1 For all x € £, Sy(x,-) € Pp(E).

H2 There exist non-negative real numbers ay, as, ..., aq satisfying 23:1 a; < 1 and such that for
all (u,x,y) € [0,1] x E? x E9,

Wy (Su(x,-)

T M@

d(xj, y5)-
H2 There exists a positive real number C such that for all (u,,v,x) € [0,1] x [0,1] x EY,

W (Su(x,), Su(x,)) < C [ 1+ d(aj,x0) | Ju—wvl.
j=1

To define Markov chains, we consider the family of Markov kernels {@Q,, : u € [0, 1]} on the measur-
able space (E9, B(E)?) and defined by

Qu <X7 dY) = S’LL (Xa dyq) ® 63?2 (yl) - ® 537(1 (dyq—l)-
The proof of the following result can be found in the supplementary material.

Corollary 3. If the assumptions H1-H3 hold true then Theorem 3 and Proposition 8 apply.

Proof of Corollary 3 Assumption H1 entails B1. Then we check assumption B3. If (u,v,x) €
[0,1] x [0,1] x E, let a0 be a coupling of the two probability distributions S, (x, ) and Sy(x,-).
Then

V(@Y dy') = s un(dyg, dyy) D121 8y, (dyy) @ b,y (dy))

defines a coupling of the two measures 5@, and §xQ,. We have

1/p

Wp (6xQu7 6va) < [/ d(yq7 y;)pax,u,v (dyq7 dy:])
By minimizing the last bound over the set of all possible couplings, we get

Wp (5me 5va) < Wp (Su (X, ) s Sy (X, )) s

which shows B3, using assumption H3.

Finally, we check assumptions B2 and B4. For an integer m > 1, (u1,...,uy) € [0,1]™ and
(x,y) € E9 x E4, we denote by ax,y. an optimal coupling of (Su(x,-),Su(y,-)). From Villani
(2009), Corollary 5.22, there exists a measurable choice of (x,y) — axy. We define

a+m
(x e +1)
Yty seitin (ATgi15 -+ ATgims AYg1s - - - s AWYgym) = H Oxy y;,u; (dzi, dy;),
1=q+1

where x; = (2j—1,...,Zi—q). Let Q@ = E™ x E™ endowed with its Borel sigma field and the

probability measure P = r(: i yqﬂ) Then we define the random variables Z; =y, Z;’q“ =y,

14



for 1 <j<gandforl<j<m, Z;j;l(wl,wﬁ = w14, Z;'_‘;}'l(wl,wg) =wyj for j=1,...,m. By

definition of our couplings, we have

BV [0(Z0, 2] < Y amte [0z 2 Y]
j=1
Using a finite induction, we obtain
EY/P [d (Z;q“, ZZ““)I)] < ad max d(z,vj),
where a = Y1 a;. Setting X%, = (Z_,41,- -, Z3,), this entails

WP (6XQU1 U Qum’ 6}'Qu1 T Qum) < El/p [dq (X:vcw XT};L)p]

m—j+1
< Ya max d(z;, y;)

1<j<
j=1 ’
a m—j+1
< ga - dy(x,y).
i=1

Then B2-B4 are satisfied if m is large enough by noticing that W7 < W,,. O

Example. Natural examples of g—order Markov chains satisfying our assumptions are given
by time-varying autoregressive process. More precisely, if £ and G are measurable spaces and
F :[0,1] x B1 x G — E, the triangular array {X,,;:1<i<n,n € Z"} is defined recursively by
the equations

1 .
Xn,i =F <n7Xn,i17 .. -aXn,iq75i> 3 q+ 1 <1< n, (8)

where the usual convention is to assume that
Xni=F(0,Xni-1,...,Xni—q.€), ©<0.
Then, if S, (x,-) denotes the distribution of F' (u,zg,...,x1,¢1), we have
Wy (Su(x,-), Suly, ) S EVP[A(F (u, 2, w1,61)  F (w,yg, -, y1,61))7]
Wy (Su(x,-), Su(x,+)) < EL/P [d(F (u,zq,...,21,61), F (v,2q,...,21,€1))].
Then the assumptions H1 — H3 are satisfied if for all (u,v,x,y) € [0,1] x [0,1] x EY x E1,
EYP [d(F(u,2q, - .., 21),20)"] < 00,

q
El/p [d (F(’U,, Lgy--- 7331)7 F(“’v Yqs - - - 791))17] < Z a’]d (xq—j-‘rlv yq—j—l—l)
=1

and

q
E!/P [d(F(u,zq,...,21), F(v,2q,...,21))F] < C 1+Zd(xj,x0) Ju— .
j=1

15



A typical example of such time-varying autoregressive process is the univariate tv-ARCH process
for which

q
Xn,i =&\ |ao(i/n) + Z aj(i/n) X3 ;s
i=1

with E& = 0, Var& = 1. The previous assumptions are satisfied for the square of this process if
the a;’s are Lipschitz continuous and if

q
||£t2||p' sup Zaj(u) < 1, for some p > 1.
u€(0,1] =1

See Fryzlewicz et al. (2008) and Truquet (2017a) for the use of those processes for modeling financial
data.

Note that one can also consider some autoregressive processes for instance on R with d(z,y) =
|x —y|% « € (0,1) and p = 1. This is useful to define some models for which the noise ¢ is not
integrable. However, note that in this case, (R, d) is not a Banach space because d is not associated
to a norm.

10 Auxilliary Lemma for the proofs of Section 3

Lemma 2. If f: E — R is a Lipschitz function, then for all measures p,v € P,(E), we have

(/e (J )"

where §(f) denotes the Lipschitz constant of f:

< 6(SIWp(p,v),

1) = sup ———"~

Proof of Lemma 2 If v denotes an optimal coupling for (u,v), we get from the triangular

inecuality
(fra)"=(frw)”
- '( / fp(x)dfy(x,y))l/p -(/ fp(y)dfy(x,y))l/p
< (fue- f(y)lpdv(:r,y)>1/p
< 5[ d(m,ywdw(x,y))l/p.

which leads to the result of the lemma.]
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Lemma 3. Let X and Y two random variables taking values in (E,d) and such that Px, Py €
Pi(E). On E x E, we define the metric

d((z1,22), (y1,92)) = (d(@1, y1)P + d(z2,y2)?) 7.
Then we have

W, (Px.y,Pyy) > 2 7 EYP (d(X,Y)P).

Proof of Lemma 3 Consider the Lipschitz function f : F x E — R defined by f(z1,z2) =

-1
d(x1,z2). Using the triangular inequality and convexity, we have 6(f) < 9" . Then the result is
a consequence of Lemma 2.7

Lemma 4. Let p € P,(E) and Q, R be two probability kernels from (E,B(E)) to (E,B(E)) such
that

1. for all x € E, the two probability measures 6,Q) and 6, R are elements of P,(E),
2. there exists C > 0 such that for all (z,y) € E?,

Wy (6:Q,04Q) < Cd(z,y), Wy (&R, 6yR) < Cd(z,y).

Then, if p € Pp(E), the two probability measures pQ, puR are also elements of Pp(E). Moreover,
we have

WP (nQuuR) < [ W] (5,.6. ) dute), )
and if v is another element of Pp(E), we have

WP (/J’Qv VQ) < CWP(M? V)- (10)

Proof of Lemma 4. Using Lemma 3 with f(z) = d(z,x¢), we have for a given y € F,
1/p
[ a0rQudn) < | W(6,0.5.,Q) + ( [ . soratan, dw>>

<

Caan,) + ( [ dto. ) Qan, d@)”pr

After integration with respect to p, it is easily seen that uQ € P,(E).
To show (9), one can use Kantorovitch duality (see Villani (2009), Theorem 5.10). Denoting by
Cp(E) the set of bounded continuous functions on E, we have

WP (4@, uR) = sup { [ otomaun - [ w<y>uR<dy>}
o) = (y)<d(z,y)P,(d,)ECH(E)

dz) dy) b | p(d
/ L(w) P () B {/ PR ) / vtz y}] e

< / WP (6.Q.6.R) ju(d2).

IN
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Finally, we show (10). Let ¢, be two elements of Cy(E) such that ¢(z) — ¢(y) < d(x,y)P and ~v
an optimal coupling for (u,v). Then, for u,v € E, we have

/qﬁ(:c) u, dx) /1/1 (v,dy) < Wp( 0uQ, 0,Q) < CPd(u,v)P.

Moreover,

[ stmaran - [ = [ | [ s - [smaew.a)|.

Then (10) easily follows from Kantorovitch duality.[]

Lemma 5. Let j > 1 be an integer. Assume that Q1,...,Q; and Ry,..., R; are Markov kernels
such that for all x € E and 1 <1 < j, 0,Q; and 0, R; are elements of P,(E) satisfying

Wp ((5le7 5le) S de(xa y)7 Wp ((5sz, 5yR7,) S le(l', y)?
for all (z,y) € E%. Then, for all x € E, we have

j—1
Wp (5xQ1"'Qj,5zR1"'R]’) § Lj-“Ljferlefsa

s=0
where Df = f WI? ((SyQi, 5sz) 5IR1 cee Ri,l(dy).
Proof of Lemma 5 Using the inequality
j—1
Wy (0:Q1 -+ Qj, 0z Ry -+ Rj) <> Wy (0aRy -+ Rj s 1Qjs+ Qj, 0By -+ Rj_sQj—sy1 -+ Qj)
s=0

the result follows using Lemma 4.[]

11 Additional examples for the Wasserstein metric

11.1 TIterated random affine functions

In this section, we consider some examples of iteration of random affine functions. Here we assume
that for each u € [0, 1], there exists a sequence (A¢(u), Bi(u)),c5 of i.i.d random variables such that
Ai(u) takes its values in the space M, of squares matrices of dimension d with real coefficients and
By (u) takes its values in £ = R?. Let || - || a norm on E. We also denote by || - || the corresponding
operator norm on My. We then consider the following recursive equations

Xni=4; <Z> Xn,i—1+ B; <Z> . (11)
n n

Local approximation of these autoregressive processes by their stationary versions X;(u) = A¢(u) Xe—1(u)+
By (u) is studied is studied by Subba Rao (2006). In this subsection, we will derive similar results
using our Markov chain approach. For each u € [0, 1], we denote by -, the top Lyapunov exponent
of the sequence (A¢(u)),cz, i

a1
Yu = }Lgfi EE log HAn(u)An—1<u) T Al(u)H

We assume that there exists t € (0, 1) such that

18



R1 for all u € [0,1], E||A;(u)||* < oo, E||By(u)||! < oo and 7, < 0.
R2 There exists C' > 0 such that for all (u,v) € [0,1]?,

E||A;(u) — A (0)||* + E||By(u) — B1(v)|* < Clu — v|".

As pointed out in the main document, our results are valid if we assume Hdélder continuity
instead of Lipschitz continuity, in particular Theorem 3. Then assuming this extension, we get the
following result.

Proposition 9. For s € (0,1), we set d(xz,y) = ||z — y||* and xo = 0. Assume that assumptions
R1 — R2 hold true. Then there exists s € (0,t) such that for all integer j, there exists a real
number C > 0 such that for alluw € [0,1] and 1 <k <n—j+1,

k| 1]
+77
ns

u— —
n

Wy (7‘(1(:]-),71'%]') <C [

Notes

1. Using the remark given in the Note of Section 3.2 of the main document, we also have
E|| X, — Xi(u)|® < C <|u - %‘5 + #), where the process (Xj(u));c satisfies the iterations
Xi(u) = Ag(u)Xg—1(u) + Bi(u). Then the triangular array {X, : k < n,n € Z*} is locally
stationary in the sense given in Vogt (2012) (see Definition 2.1 of that paper).

2. One can also give additional results for the Wasserstein metric of order p > 1 and d(z,y) =
|z =yl if

E[ A1) +E[[Bi(w)|? < oo, EVP|Ai(u) = Ai(v)[|” +EV7||Bi(u) — Bi(0)|]" < Clu—v]

and there exists an integer m > 1 such that sup,¢jo 1) E[|Am(u) - - - A1(u)||P < 1. In particular,
one can recover results about the local approximation of tv-AR processes defined by

q
Xni = Z a;(i/n)Xni—j + o(i/n)e;
j=1

by vectorizing g successive coordinates and assuming Lipschitz continuity for the a;’s and o.
Details are omitted.

Proof of Proposition 9 For all (z,u) € R? x [0, 1], the measure §,Q,, is the probability distri-
bution of the random variable Ay (u)z + By (u). Condition B1 follows directly from assumption R1
(whatever the value of s € (0,¢)). Moreover, we have for s € (0,t),

W (5.Qur8eQu) < ElAx(w) — A - ol + B By(w) — Bu(o)l
(1 lol*) - (B | AuC) — Ao)lf + B [ Bu(w) — Bl

IN

This entails condition B3, using assumption R2. Next, if u € [0,1], the conditions v, < 0 and
E||A¢(u)||* < oo entail the existence of an integer k,, and s,, € (0,t) such that E|| A, (v) Ag, —1(u) - - - A1 (u)|** <
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1 (see for instance Francq and Zakofan (2010), Lemma 2.3). Using the axiom of choice, let us select
for each u, a couple (ky, s,) satisfying the previous property. From assumption R2, the set

Oy ={vel0,1]:E|Ag, (v)Ak,—1(v)--- A1(v)||** < 1}

is an open set of [0,1]. By a compactness argument, there exist wui,...,uqg € [0,1] such that
[0,1] = U4, O,,. Then setting s = minj<;<4 54, and denoting by m the lowest common multiple of
the integers ky,, ..., ky,, we have from assumption R2,

r= sup BlAn(u)- i) <1
u€(0,1]

This entails condition B2 for this choice of s, m and r. Indeed, we have
Wi (6:Qy 0yQy') < El[Ap(u) - - - Ar(u)(z — y)[I° < rd(z, y).

Note also that condition B4 easily follows from the uniform continuity of the application (ui, ..., uy) —
E||Am(uy) - - Ar(up)||® .O.

11.2 Additional discussion

The approximation of time-varying autoregressive processes by stationnary processes is discussed
in several papers. See for instance Subba Rao (2006) for linear autoregressions with time varying
random coefficients, Vogt (2012) for nonlinear time-varying autoregressions or Zhang and Wu (2015)
for additional results in the same setting. In what follows, we assume p = 1 for simplicity. The
approximating stationary process of (8) is given by

XZ(U) =F (U, Xi_l(u), 51’) .

Note that W, (71']({”), 7ru) < EYP [d (X ,in) , Xk (u))p] and the aforementioned references usually study

a control of this upper bound by |u - %| + % Note that in the case of autoregressive processes, a
coupling of the time-varying processes and its stationary approximation is already defined because

the same noise process is used in both cases. However it is possible to construct some examples for

which ﬁ,(cn) = 7, and EYP [d (X, 1, Xx(u))P] # 0, i.e the coupling used is not optimal. Nevertheless,

it is still possible to obtain an upper bound of EY/P [d (X ,gn), X k(u))p] using our results. To this
end, let us consider the Markov kernel form (EQ, B(EQ)) to itself and given by

QW (x1, 29, A) = P((F(v,x1,61), F(u,29,61)) € A), AeB(E?), wvelo1].

One can show that the family {Qq(,u) cv €0, 1]} satisfies the assumptions B1 — B3 for the metric

do [(1,22), (y1,92)] = (d(w1, y1)" + d(w2,y2)") "7 .

Moreover, the proof of Theorem 3 shows that the constant C' > 0 does not depend on u € [0, 1].
Then Lemma 3 guarantees that there exists a positive constant C not depending on k,n,u such

that
3
+=|.
n

k
u— —

VP (d (X X)) < [[u— &
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12 Proof of Proposition 2

1. According to Lemma 1 given in the paper, there exists (v,d) € (0,1)? only depending ), b, 7,
such that

1nQu —vQi'llvs
= vllvs

Avs(QT)=Sup{ pn, v € P(E), uVZs<oo,V‘/5<OO} <,

with Vs =1 — 0 4 V. From Theorem 6.19 in Douc et al. (2014) and Assumptions F1 — F2,
we have a unique invariant probability 7, for @, satisfying 7,V < oo and for u € P(E) such
that pV < oo, we have

11Q, — mullvy < [ nax Avy (@Y™ 1 = |-
<s<m—1

Note that || - v, < |- [lv < 1| - |lv, and the two norms are equivalent. Using Lemma 6.18 in
Douc et al. (2014), we have

102Q5 — 8,5 \lv, _ K*
A S — Su u u 5 < N
v(Qu) e V@) + Valy) — 0

Then it remains to show that sup,cp,1) TV < oo or equivalently sup,¢(o ) muVs < co. But
this a consequence of the contraction property of the application p — pQ!" on the space

Ms={pneP(E): uVs < oo}
endowed with the distance ds(u,v) = ||u — v|ly;, which is a complete metric space (see

Proposition 6.16 in Douc et al. (2014)). Hence we have

o0

=T = 3 QT - p QY

j=0
which defines a normally convergent series in Mgy and

(o]
, uV + K™uVv
o= mullvy < 307l — @y < HET I
j=0 7
This shows that sup,cp,1) 7V < co and the proof of the first point is now complete.

2. To prove the second point, we use the decomposition 7, —m, = 7, Q1" — T, Qi + 7, Q' — T, Q1.
This leads to the inequality

HTerum - WvamHVa

L=y

|77 — 7TvHV5 <

21



13

Moreover, we have
@’ — @y v < HMQ’” —m @y lv
Z 7@y Qo — Qu)Qillv

IN
3&:
L

Kj “WvQT_j_l (Qv - Qu) HV

(]

<.
Il
o

3
L

K7,V - ju — .
0

IN
?.

. 11‘7 — y
Hence the result follows with C' = Sup’c‘ifiﬂy)ﬂ Z;nzol K0

Proof Theorem 3

We start with the case j = 1. We assume first that n > . Under the assumptions of the
theorem, Lemma 6 given below guarantees the existence of (v,d) € (0,1)? such that for all

kE<n, Ay, (Qk—m+1 Q5> <y with Vs =1—-0+4+0V. Set R = Qr-ms1 - - Qr, we get

7™ = wullvs < AT, = Tullvs + 17w Rem — TP v

From our assumptions, we have

MS

H7TuRk,m - ﬂ-”LLQumHV <

HQO Qs — Qu] Qumr -+ Qullv

7=0
m—1 4 o ki
< K7, Qritiy . ‘u - j’
i=0 "
< K™ sup TV Z ‘u—i)
u€e0,1] n
s=k—m+1
k 1
S D1|:’LL—‘—|—:|,
n| n

for a suitable constant Dy > 0. Noticing that ||« |ly; < ||-|lv <37 - |lv;, we get for a suitable
constant Dy > 0,
]
+-.

(n) D, - k—gm 1 k
17, _Wu“VS(sj;O'Y]HU_ || <Dy fju— |+~

(n)

For n < m/e, ||nf — wullv < m"V + supyepo 7uV < 2K < supyepoq mV - Zn!

. Setting

C = max { Do, 2K%% sup 7,V p, we get the result.
u€el0,1]
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2. Assume that the result is true for an integer j > 1. Let f : Eitl — R, be such that
flar, o wgen) S V() + -+ V(2jp1). Setting s; = 307, V(w;) and gj(wj41) = f(21,...,2511),
we use the decomposition g; = g;1g,<v + (g5 —=V) Tvegi<vis; + V0iveg <vis;, and we get

5mJQk+j+1 g5 — 5xj+1 ngj‘

S 2|02, Quagr — 0, Qul| |, + 851190, Qusin — 0, Qullrv
% k+j+1
< 2 [V () + (V(z1)+ -+ V(xj)) L(xj)} ’u -

1/ . k+j+1
and ”ﬂ'u,j & Qk+7];+1 — 7Tu,j+1||V < 2 (Supue[(),l] 7TuV —i—]G) ‘u — %’ . Moreover, Hﬂ'u,j ®

Qk-‘—i—&-l — ﬂ,iZ)HHV < (14 K)”ﬂ'}gnj) — my,j|lv. The last two bounds lead to the result by
induction. Moreover, using the same type of arguments, one can also check the continuity
condition 1 of Definition 1.0J

The following result is proved in Hairer and Mattingly (2011), Theorem 1.3. Note that our
function V' corresponds to their function V' + 1. For a Markov kernel P on (E,B(E)), we set

llnP = vPly .

AviP)= S“p{ =

p,v € P(E), ,uV<oo,1/V<oo}.
Lemma 6. Under the assumptions F1 —F2, there exists (v,8) € (0,1)2, only depending on

A, b, such that for all (uy,...,un) € [0,1]™ such that |u; — uj| < €, 1 < 4,5 < m, we have
Avy (Quy ++ Qu,) <7, with Vs =1—05+6V.

14 Mixing properties of ARCH processes

We assume that

p
Xk =€k, | ao(k/n) + Z aj(k/n)Xg’k_j = e10k/m (Xnk—15- > Xnjk—p) -
i=1

with continuous coefficients ao, ...,ap, a positive function ag, a = sup,g Z?:l aj(u) <1
and the noise has a density f. which has a positive lower-bound on each compact set. Set
¢ = max,e[,1) ao(u) + 1 — a. Here we have

—1
1 Y r
Qu(x,dy) = f < P ) Oz 1 AYi-
U( ) O'u(ypflaxpfla--wa) ‘ Uu(ypflyxpflw'-axﬂ }_[1 AR
Now set Vi(z) = 1+ 2. For m > 1 and uy, ..., uy, € [0,1], we define the recursion

K':QUui(nfl,---aYifp), Yi:$1a~~-7YZL7:-Tpa Z:p+1aap+m
For p+1 < i < p+m, we have d; = EV1(Y;) < ¢+ amax{d;_1,...,di—p}. Setting V(x) =
P Vi(xs), we have 6xQu,, -+ Quy V = S22 0 BV (Yimip—i)- By a finite induction we obtain

i—p—1

+a Vp(x), p+1<i<p+m.

d; <

1l—«
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Then F1 is satisfied if m is large enough. In the sequel, we assume that m > p. Next we set

1 Tpt1
gul®1, s Tpr1) = au(aﬁp,...,xl)fe <au(xp,pfr..,m1)>
and for a < b,
s = inf {gu(xl,...,po) cu € [0,1], (z1,...,2p41) € [a, b]p+1}.
If 1,...,2p € [a,b], we have

6wQum e Qu1 (A) Z Sm(b - a)mip)‘(A N [a’ b]p)7

where A denotes the Lebesgue measure on RP. We first choose R > 2b/(1 — \) and then a < b such
that {V < R} C [a, b]P, assumption F2 follows with v being the uniform measure on [a, b]P.

Note. Our assumption for the density f: is different from that used in Fryzlewicz and Subba Rao
(2011). Indeed Fryzlewicz and Subba Rao (2011) use (see Assumption 3.1) a continuity type
condition while we impose a positivity condition.

15 Justifications for the example of Section 4: Markov switching
autoregressive processes

We will use the following additional assumptions.

1. There exists a positive integer p such that

E|m(u 2 y) +o(u, 2’ y)51|pJrl

P < 1.

lim sup max sup E Q,(z,2)
ze
y—00 2u€01]z€E2

2. We assume that inf(, . c0,1]xE @ (u z,y) > 0. Moreover, there exists a positive constant C
such that for all (u,v,y, ) [0, 1]% x

Im(u, z,y)—m(v, z,y)|+|o(u, 2,y)—0 (v, z,y)| < C(1+ |y]) [u—v|, |m(0,z,y)[+0(0,2,y) < C(1+y|).

3. The noise density f. is positive everywhere, continuously differentiable and satisfies [ |z[PT! f.(2)dz <
oo and [ |z[PT1|fL(s)|dz < oc.

The transition kernel @Q,, for the bivariate Markov chain Xj(u) = (Yz(u), Zx(u))’ is defined by

@ ) =Tz [ s (B

u, 22, Y1 g u7227y1)

Let us show that Assumptions F1-F3 are satisfied.
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e To check the small set condition F2, we first choose an integer m > 1 such that inf,,¢jo 1] Q' (2, 2") >
0 for all (2, 2) € E3. Using uniform continuity, we have 6, ,» = inf o, ) elm(e) Qui +* Qun, (2, 27) >
0 for all (z,2') € E%, provided € > 0 is large enough. We will show that the small set con-
dition is satisfied for all compact sets. Let K be a compact set. We set g(u,z,y,y’) =

a(u,lz,y) f- (ylgz(:yz)y)) If yo € K and zg € E5, we have for a Borel set A,

m—1
inf u, 2,1,y
z,z' € By <(u,z7y,y’)€[071]XEzX[OJ]2 gl vy ))

. i f » <y I - A
(u,z,y,y/)e[07llr]1><E2XKX[OJ}g(u 2,9,9') - v(A)

5?40,20@711 w Quy, (A x {z}) > min 6,2,2’ :

where v denotes the uniform measure over [0, 1]. From our assumptions, the noise density has
a positive lower bound on each compact subset of R and the functions m and o are locally
bounded. This entails

m—1
< inf 9(u, 2,9, y')>

u,2,9,y') > 0.
(u,2,,9")€[0,1]x E2 x[0,1]2 (u, 2,9,9)

. inf g
(u,2,y,y")€[0,1] x E2 x K x[0,1]
The small set condition is then satisfied for all compact subsets of F.

e Now, we check F1. We set V(y,2) = 1+ [y[P*! and V(y,2) = 1 + |y|P. From our first
assumption, it is clear that there exist A\ € (0,1) and b > 0 such that for all (u,z,y) €
[0,1] X By x R, N

0y,-QuV < AV (y,z) + 0.
The result also holds for V instead of V. Iterating this inequality, we see that F1 is also
satisfied by iterating m Markov kernels where m is defined in the previous point. Note also
that the set {V < R} is compact for all values of R and the F2 is also satisfied whatever the

value of R > 0. Moreover, from the drift condition satisfied by XN/, we have sup,¢(o 1) 7ru‘~/ < 00,
a property necessary to check Assumption F3.

e Using our second assumption, the moment condition for the noise and the Lipschitz properties
of u — @, there exists a positive constant C such that

18y,:Qu = 0y =Qullv < Y Qu(z,Z’)/ [L+1' P - 9(u, 2y, 0) = 9(v, 2 y,9/)| dy

Z/€Fy
+ Clu—v|- (1+[yf)
= FEi1+ Es.

For simplicity of notations, the quantities m(u, z,y) and o(u, z,y) will be simply denoted by
m and o respectively and m(v, z,y),o(v, z,y) by m’and ¢’. We have the bound F; < A+ B

with | /| . )
o —0 —m
A:/[H!y’\p] — [ (y - >dy’
oo g

Je <y ;m> — fe (y ;,m )'dy'
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Using our assumptions and the mean value theorem for bounding B, we have

A<y (14 [P fwa)

" Bl (14 [ 1ol ) do)

for a suitably chosen constant L > 0. This shows F3. Finally the function L in the second
point of Theorem 3 is of the form (using the previous bounds for p = 0) L(y) = K(1 + [y|)
and the integrability condition follows form sup,e(g ) 7V < 0o

Note If the functions m and ¢ do not depend on their first argument, the assumptions given
above can be weakened. In Assumption 2, it is only necessary to assume a positive lower bound
for o and that for all compact subset K of R,

sup max [|m(z,y)| + o(z,y)] < cc.
yeK #€E2

Assumption 3 can be replaced by: the noise density f. has a positive lower bound on each compact
subset of R. Finally one can take V(y,z) = V(y,z) = 1 + |y|’, p being a positive integer, for
checking Assumption F3.

16 Justifications for the local stationarity of integer-valued au-
toregressive processes

We consider a sequence (Y;(u));>q of i.i.d random variables following the Bernoulli (resp. Poisson

for the Poisson ARCH process) distribution of parameter o, and a random variable £(u) following

the Poisson distribution of parameter A,. We assume that £(u) and the sequence (Y;(u)),, are
independent. For u € [0, 1], we have

02QuVp

— 14E <aua:+ S (Yilw) - ) +s<u>>

i=1

= l4aba?+) <§) aP I gPIR (zx: (Yi(u) — o) + §(u))

j=1 i=1

Using the Burkholder inequality for martingales, we have for an integer £ > 2,

x ¢
E (Z (Yi(u) — au)> < Cyz? max E 1Y (u) — o’

‘ 1<i<z
=1

where Cy is a universal constant. Note that max,cp 1) E|Y;(u) — |’ < o0, since u > ay is
continuous and bounded. Then, we deduce from the previous equalities that there exist two positive
constants M; and My such that

6:QuVy < V() + MyaP~! + M.
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To check the drift condition in F'1 for m = 1, one can choose v > 0 such that A = max,¢g 1 b+ <

P
1 and b = M + (Mi1> . In this case, the small set condition is satisfied for each finite set C with

v = dg because

Qu(z,0) > (1 — max au>xexp (— max )\u>

u€l0,1] u€l0,1]

for the INAR process and

Qu(x,0) > exp (—az max oy, — Inax )\u>
u€(0,1] u€(0,1]
for the Poisson ARCH process. In both case, = min,¢[g,1] mingec Qu(x,0) > 0. This shows that
assumption F2 is satisfied by taking R large enough.
Finally, we show F3. Let u,v € [0,1]. Denoting A\; = maxyeo,1] Adu and by p, the Poisson
distribution of parameter \,, we have
Vo(k)

max, paVp STHENY | [l = pollv, <D o (W‘l + X’“) A = Ao
u€e|0, k>0 !

where (IV;)¢>0 is Poisson process of intensity 1. Moreover, if v, denotes the Bernoulli distribution of
parameter oy, we have v, —vy v, < 3|, — ay|. From Lemma 7 given below, we easily deduce that

F3 holds for V = CVp41 where C is a positive real number. Note that we have sup,¢(o 1] TV < 00

because V also satisfies the drift and the small set conditions. Since all power functions satisfy the
drift condition, the integrability condition required in the second point of Theorem 3 is automatic.

Lemma 7. Let X1, Xo,...,X,,Y1,Y5,...,Y, be independent random variables such that A, =
maxi<j<n, EV(X;) VEV(Y;) < oo for 1 <i<mn, with V(z) =1+ |z|P and p > 1. Then we have

sup ’Ef(Xl +-+ Xn) - Ef(}/i + -+ Yn)‘ < 2p—1np : An - nax H]P)Xi - PYiHV-
If1<V 1<i<n

Proof of Lemma 7. Note first that if | f(z)| < V() forallz € E, then | f(z+y)| < 2P~V (2)V (y).
This leads to

Ef(X1 4+ Xn) —Ef(V1 +--- +V2)]

n
Z’Ef(Xl‘|‘"'+Xj,1—|—Xj—|—ij+1+..._|_Yn)

<
j=1
- Ef(Xi++ X1+ Y+ Y+ + V)
n
< 2p_IZHij—PyjHV'EV(Xl+"'+Xj_1+1/j+1+"‘+yn)
j=1
n
< 27 n - 1P Py, — Py, llv A,
j=1
< op~lpp — Py ||y
< 27 P Ay max [Py, — Py lv.0
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17 Estimation of INAR/Poisson ARCH processes

Since we have
E (Xn,k|Xn,k:—1) = ak/an,k—l + >‘k/n7

a natural estimate is obtained by localized least squares. Set a(u) = (o, \y) and Yni= (1, Xn,i_l)’.

Then we define

n
a(u) = arg rrgnz ei(u) (Xn,; — y;maf
i=2

n -1 5
= (Z ei(u)yn,iy;m> Z ei(u)Xn i Vn,i = D;'N,.,

=2 =2

where the weights e;(u) are already defined in the main document.
The asymptotic behavior of this estimator is given in the following proposition.

Proposition 10. Let u € (0,1). If b — 0 and nb — oo, we have

lim Vb (a(u) — E7H(D,)E(N,)) = N2 (0, 5(u)),

n—oo

where N2 (0, X(u)) is the bivariate normal distribution with mean 0 and variance X(u) = f_ll K?(v)dv-
B (u) ' Ba(w) S (uw) 1,

Si(u) =E [Wi(w)di(u)], Ba(u) =E [(Xl(u) — Vi(u)a(u)’ yl(u)yl(u)/} :

Moreover we have E=1(D,)E(N,) — a(u) = O(b).

We will apply Proposition 5 with V(z) = 1 + |z|P for some real number p > 4. But, first we
will prove the second part of the proposition. We have from Theorem 4 and the compact support
of the kernel K,

= 1
Z €Z(U)E Dimy;m] =K D)Z(u)yl(u)’} + O (b + n) = O (b) .
i=2
In the same way, we have
> ei(w)EX, Yoy = EXi(w)Vi(u) + O (b + i) =0(b).
i=2

Moreover it is straightforward to prove that for all m > 1, 2 < k < n and u € [0, 1], the matrices
E [ymky;%k} and E [Vi(u)Vi(u)'] are non degenerate. Using the approximations given above, this

entails E~! [D,] = O(1) and also the second part of the proposition.
Next, using Proposition 5 and the martingale difference property, we have

\/%ie-(u)y (X, — Y aali/n)) — No (0 /1 K?(v)dv - Eg(U)) .
P 7 n,t n, n,t 5 .
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Using again Proposition 5, we have D,, — E(D,,) = op(1). Then we deduce that

bz €i(W)Vn,i (Xni — Vhsali/n)) — Nz (0,5(w)) .

To end the proof, it remains to show that

1§}zamwzwm—wﬂmmwm—wﬂég.

But the argument is similar to the proof of Theorem 5, point 3 (see assertion (4)). Hence we omit
the details.lJ

18 Local stationarity of SETAR models
We set r (k/n, X, k1) = Xp, —€r and

Qu(z,dy) = f- (y — r(u,v)) dy.

Note that r(u,z) < max (max,efo 1] |b(u)], max,ep 1y |c(u)|) + alz|. Assumption F1 can be easily
deduced with m = 1 and V(z) = 1+ |z|P or V(z) = 1+ |z[PT!. In the sequel, we set V() = 1+ |z|P.
The levet sets for V are compact and for each compact set K, we have max,c(o 1) zex |7(u, z)| < 0o.
Morover n = inf ek (y w)eo)2 fe(y — 7(u,2)) > 0 we have for all measurable sets A, Qu(z,4) >
Qu(z, ANJ0,1]) > nv(A) where v denotes the Lebesgue measure over [0, 1]. This shows F2 for any
number R > 0. Next we check F3. From our assumptions, there exists C' > 0 such that

max |r(w,2)] < CU+f2l), - [r(w,z) =r(v,2)] < OO+ fz])u —vl.

Then we have, using the mean value theorem,

16:Qu — 6,Qullv < /G+MWk( r(u,a)) — foly — r(v,2))ldy
< /u+ua+c+aﬂm‘mwnwwm%@—m%mw

Then Assumption F3 holds with V(z) = D (1 + |z[P™!) for a suitable chosen real number D > 0.
One can also check the condition of the second point in Theorem 3. Indeed setting L(z) = K(1+|z|)
for K large enough, the arguments used previously give

102Qu — 02Qull7v < L()|u — v|.

Moreover, from the drift condition, we have sup,¢ 1] 7.V < 0o and the finiteness of

uil[lopl] E[L (Xe(u) V (Xe(u))]

is automatic.
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19 Proof of Proposition 4

The proof is based on the central limit theorem for strongly mixing triangular arrays given in Rio
(1995), Corollary 1. Note that, the strong mixing coefficients are upper bounds of the f—mixing
coefficients. Moreover, it is clear that the triangular array {Z,,; : 7 < i < n,n > j} is still f—mixing
with a geometric rate of convergence.

1. Suppose first that o> > 0. We set Hy;, = ﬁ [Zy,i —EZ, ;] and we study the asymptotic
behavior of > 7 | Hy,; which is the same than Z?:j H,; (by convention, we assume that
(Xn.i);<o is a path of the stationary Markov chain with transition Qg). For 1 <i < n, we

also set V,,; = Var (22:1 Hn,i),
Qni(z) =sup{t e Ry : P(|Hp4| >t) > 2}, x€(0,1)

and we denote by 3, ! the inverse function of the f—mixing rate function (i.e z — B,([z])).
One can check that there exist C' > 0 such that for all (n,v) € N* x (0,1) and , 8, (v) <
C (—log(v) +1). Moreover, from our assumptions, there also exists p € (0,1) and C" > 0
such that £,(j) < C'p7, if j < n. To apply the result of Rio (1995), we need to check the two
following conditions.

. Vi
lim sup max —2- < 0o, (12)
n—oo 1<i<n Vn,n

i V223 [ B @)Q2 (o) nf (87 (0) Qo). /o) d = . (13)
n—o0 ’ =1 0 ’

e First, we check that sup,,~; maxj<ij<, Vi < 0o. It is enough to bound the covariances
Cov (Zni, Zni+k). Using the covariance inequality for strong mixing coefficients (see
Doukhan (1994), Theorem 3), we get

2
244

1CV (Zugs Znin)| < 8Ba(k) max [ Zud
1<i<n

Then the result follows from the assumption made on V', which ensures that maxi<j<n, | Zn
O(1) and the geometric decay of the f—mixing coefficients.

2446 —

e Next, we check that lim,, s Vj, » = 1. From the mixing properties given in Proposition 3
of the paper and the covariance inequality for strong mixing sequences (see the previous
point), we have

sup Y |Cov (Zo(u), Zi(u))| < oo.
u€l0,1] o7

Now let A be a positive real number. We first fix a positive integer K such that

1
Z/O Cov (Zo(u), Ze(w)l du+ max 3~ |Cov (Zugs Zug)| < A2

|k|>K 1<j<n

30



Now there exists a positive integer ng such that for all n > ny,

Z > Cov(Zoli/n), Zj-i(i/n)) / Z Cov (Zo(u), Z;(u)) du| < \/4 (14)

i=1 1<j<n
l7—i|<K

and

%Z Y 1Cov(Zui, Zug) — Cov (Zo(i/n), Zj—i(i/n))| < A/4. (15)

i=1 1<j<n|
l7—i|<K

Indeed, (14) can be proved using the continuity of u — Cov (Zy(u), Z;(u)) which follows
from the local stationarity property, the continuity of f with respect to its first argument
and the Lebesgue theorem. Moreover, (15) can be proved using the approximation
with stationary Markov chains, this approximation being of the order 1/n. Finally, we
conclude that for n > ng, |V, » — 1| < A. This justifies the limiting behavior of V;, .
Moreover, using the previous point, assertion (12) follows.

e Finally, we prove (13). Using the Markov inequality, there exists a constant C' > 0 such

that
P(|H, < 70
(’ n,i| > y) — nl 5/2y2 5"

1

Then we have maxi<ij<p Qn,i(z) < Cw’x_ﬁn72 and assertion (13) follows from the
Lebesgue theorem.

The proof of point 1 is complete when ¢ > 0. If ¢ = 0, it is easily seen from the previous

arguments that
.1 - )
nh_)rrolo ﬁVar (Zl Zn,i) =0“=0
1=

and the limiting distribution is the Dirac mass at point 0.

. The proof for the second point is similar to the first one by setting

1 u—k/n
Hn,k = K < > [Zn,k - EZn,k} )
Vnbo (u)|| KLz b

where || K2 = 4/ f K (v)2dv. Using the same notations as for point 1 and the compact

support of the kernel, one can show that lim, .V, , = 1 and condition (12) is satisfied.
Moreover,

_1 _1
Qn,i(x) < Cx” 25 (nb) "2 Ljy_i/n|<b
and the proof of (13) is similar to the proof of point 1. Details are omitted.(]
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20 Localized Maximum likelihood estimator

20.1 Asymptotic properties

Proof of Theorem 4 The proof follows that of Dahlhaus et al. (2017), Theorem 5.2 and 5.4.
We check the main arguments. We set £(0) = E[S (0, Xo(u), X1(u))].

1. From Theorem 4 and Proposition 4, we have for each 6 € ©,

L.(0) — L(6) = Op <b + \%) .

Moreover, using our assumptions and the Lebesgue theorem, the function 6 — L£(#) is con-
tinuous. Next, we study the stochastic equicontinuity of £,. Let €,6 > 0. We have,

P ( sup ‘En(Q) — L’n(H’)‘ > e)

19—6'|<6

IN

sup ‘S(H;Xn,kflaXn,k) - S (0’,Xn,k,1,Xn’k) ‘]
|0—0"|<6

1 n
- > Ky(u—k/n)E
k=2

sup |5 (0, Xp—1(u), Xg(u)) — S (6", Xp—1(u), Xp.(u)) || +O(b).

l0—6"|<5

1 n
= —g Ky(u — k/n)E
en
k=2

From our assumptions and the Lebesgue theorem, we deduce that
limlim sup P [ sup |L,(0) — Ln(0')| > €| =0.
6—0 n—00 |0—6'|<5

We deduce that
max [ Ly, (0) — L(0)] = Op(1).
€

By standard arguments, we get the consistency of the estimator é(u)

2. From the assumptions and the Lebesgue theorem, the function £ is two times continuously
differentiable on © and V2L(#) = E [V3S (6, Xo(u), X1(u))]. Using the same arguments as
in the previous point, one can show that

max | V2L, () — VZL(0)| = op(1).
0cO

Next, using Proposition 5 given in the paper, and the martingale difference property for the
stationary approximation, we have

Vb [V Lo (00 () — ELn (B0(w))] = N (o, / Kz(x)dml(u)> ,

with
I(u) = E [VlS (Qg(u), X()(u), Xl(u)) V13 (90(u), X()(u), Xl(u))’] .
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Note that I(u) is also equal to the quantity M (u) defined in the statement of the theorem. Fi-
nally, we derive an expansion for the bias. Using our approximation results and the symmetry
of the kernel, we have

EVL,(00(w)) — gul(u)

n

= Y Kol g/m)/n— )l w) + 5 S Kl — 3 /m)(u — 5/n)gl(w) +o(b?) + O(1/n)
J=2 j=2

1
= EbQQ;’(u) /U2K(v)dv +o(b?) + O(1/n).
The scheme of the rest of proof is similar to that of Dahlhaus et al. (2017).00

20.2 Examples

Binary time series For the binary time series defined by the equation (4) in the paper, we
consider

P p—1
Qu(x>y> =F 900(“) + Z 90j(u)xp+lfj H ]lyizacprla T,y € {07 1}p s.t.yp, =1
= i=1

It is easily seen that Qf has positive entries. If u — y(u) is two times continuously differentiable,
then assumptions A1-A2 of the paper are satisfied. We remind that assumptions F1-F3 are then
satisfied, setting V, V and L to 1. Assumptions L1(2) and L2-L4 are then valid. To check L5,
one can use the fact that for a finite-state irreducible Markov chain, the invariant probability is a
C>°—function of the transition matrix. See Cao (1998) for details. A general result is also given in
Truquet (2017b) for general state spaces.

Poisson ARCH process We consider the case of one lag for simplicity but extension to several
lags is possible. We have

S(0,z,y) = =0y — 12 + ylog (6p + 012) — log(y!).

Assumption L1(2) holds true. We have seen that the model is locally stationary in V' norms
for each function V(z) = 1 + 2P. The assumption L2 and L4 are satisfied if p is large enough
(p > 4 is sufficient). Assumption L3 is satisfied if fgo(u) and 6p1(u) are positive. Remember
that max,e(o 1] fo1(u) < 1. Identification of the parameter is similar to the stationary case. For
Assumption L5, we assume that u — 6p(u) is two times continuously differentiable and we use a
result given in Truquet (2017b). See Proposition 4 and Section 4.3 of this reference. This result
guarantees that u — [ fdm, 2 is two times continuously differentiable for any function f such that
|f(xz,y)| < C(1+xP + yP), whatever the value of the positive integer p.

21 Proof of Proposition 5

The key argument for the proof is to show that lim,, . Qu = (Qy a.s. From this convergence, we
will deduce that for almost w, there exists an integer ng such that for n > ng, a Markov chain with
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transition Qu,w is geometrically ¢—mixing. Taking in account of the results of Theorem 2, this
almost sure convergence can be obtained if we show that for any function f : E? — R, we have

ZiZKb(U—j/n) [f (Xnj—1, X)) = Ef (Xnj—1, Xnj)| = noeo 0. as.

Using the Borel-Canteli Lemma, it is sufficient to show that for any ¢ > 0, we have > -, P(A, >
§) < co. But, remembering that nb'*¢ — oo, this assertion can be shown using the e:;ponential
inequality given in (1) with a choice g ~ n®, A = dnb and 0 < a < .

Now, conditioning with respect to a path of the triangular array, one can consider that Qu is
deterministic and convergent towards @),,. Remind that there exists a positive integer m such that
Q7 is contracting in total variation. Now we have P* (X =) = ﬁuQZ and using a contraction
argument already used in the proof of Theorem 1 of the paper, one can show that

o 1 A
I = Qi iy < 1 max Qi (2, ) = Q@ llry +

with ¢ := ¢(Q7") < 1 denotes the Dobrushin’s contraction coefficient of Q'. Then we deduce that
there exists a constant D > 0 such that

£ 2= ) (X7 =) =) < D (125 + mx Q22 = Qe v ) = o)

On the other hand, if n is large enough, a Markov chain with transition Q., will be also geometrically
¢—mixing because Q' will be contracting. Using covariance inequalities, we obtain

LS K (u /) (L) — B (X = 2) = 05 (1)
=2

Then we deduce that lim, s % 2?22 Ky (u—j/n)1y Xi=o} = mu(z) in P* probability. Finally,
using the decomposition

S K () s oy [T oy — Quiay)
5 2o Ky (u—j/n) Lixr=ay

and the central limit theorem for triangular arrays of martingales, we deduce the result because
the numerator is asymptotically Gaussian with mean 0 and variance

Vb (Qu(a.y) = Qulx.y)) =

hmZK2< Y 3y [l — Qute] = [ K20 Q) = Qute?).

n—oo nb

The previous limit holds in P*—probability. Collecting all the previous points, the proof of the
convergence of the bootstrap estimator is now complete. The second part of the proposition will
follow from the asymptotic normality of Qu given in Theorem 5 but it is necessary to show that
the bias is of order o(b). Using a Taylor expansion, we have

Efrug(x,y) o Zz _1 el( )Qz/n( 79)772(”)1(.%) B . )
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22 An additional example for Theorem 4: the random walk on
the positive integers

Let p,q,7 : [0,1] — (0,1) three k—Holder continuous functions such that p(u) + g(u) + r(u) = 1
and % < 1. For x € N*, we set Qu(z,z) = r(u), Qu(z,z + 1) = p(u) and Qu(z,z — 1) = q(u).
Finally Q,(0,1) =1 —Q,(0,0) = p(u). In the homogeneous case, geometric ergodicity holds under
the condition p < q. See Meyn and Tweedie (2009), Chapter 15. In this case the function V'
defined by V(z) = z* is a Foster-Lyapunov function if 1 < z < ¢/p. For the non—homogeneous
case, let z € (1,e) where e = min,ep1] q(u)/p(u). We set v = max,ejo 1 {r(u) + p(u)z + q(u)z '}
and p = max,¢o,1) p(u). Note that

q(u)
p(u)z

7 <1+4+Dp(z—1) max {1—

s }gl—i-p(z—l) [1—5}<1.

z
Then we have @,V (z) < ~V(x) for all z > 0 and Q,V(0) = p(u)z+ (1 —p(u)) <c=p(z —1) + 1.
For an integer m > 1, we have Qy, - Qu,,V < v If m is large enough, we have

= 2c S < 1. Moreover, for such m, if R = V(m), we have {V < R} ={0,1,...,m} and if
x=0,...,m, we have 6,Qy, - - - Qu,, > ndo for a n > 0. Assumption F3 is immediate. Moreover
the additional condition in the second point of Theorem 4 is automatically checked with a constant
function L.

However this example is more illustrative. Indeed parameters p(u) and g(u) can be directly esti-

mated by

n—1 n—1
plu) = Z ei(u)]an,iH*Xn,i:lv g(u) = Z 61’(“)]an,¢+1* n,i=—1
i=1 i=1
where the weights e;(u) are defined as in Theorem 2. The indicators are independent Bernoulli
random variables with parameter p (’H) or q (”1) and the asymptotic behavior of the estimates
is straightforward.

23 An additional real data set example for finite-state Markov
chains

We illustrate our methods with an analysis of daily rainfall data recorded in London’s Saint-James
Park station, between January 2017 and September 2017. Data are available from www.ogimet.
com/indicativos.phtml.en. The sample size is n = 270 and we build a binary time series by
setting X; = 1 if rainfall has been recorded at day ¢ and X; = 0 otherwise. The autocorrelogram
suggests that the first autocorrelations are significant. We then fit a time-inhomogeneous Markov
chain of order 1. The selected bandwidth is b = 0.41. The autocorrelogram of the residuals does
not suggest a remaining dependence structure. The estimated values of the transition probabilities
u — @Qyu(0,0) and u — @Q,(1,1) are represented in Figure 1. It seems that the transition proba-
bilities change smoothly with time. A notable particularity is the maximum/minimum values of
the diagonal elements of the stochastic matrix around the observation ¢ = 150. Larger probabil-
ities (lower probabilities resp.) of getting another dry day (rainy day resp.) coincides with the
spring/summer period. This seasonal behavior is of course expected and is recovered by the model
which seems to be a good candidate for extracting such features from the data.
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Figure 1: Estimation of u — @Q,(0,0) (left) and u — Q(1,1) (right). The estimates are given by
the full line and the dashed lines (dotted lines resp.) represent the bootstrap pointwise confidence
intervals at level 80% (90% resp.) and which are estimated using B = 5000 bootstrap samples.
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