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Abstract

In a functional setting, we propose two test statistics to highlight the Pois-
son nature of a Cox process when n copies of the process are available. Our
approach involves a comparison of the empirical mean and the empirical
variance of the functional data and can be seen as an extended version of a
classical overdispersion test for counting data. The limiting distributions of
our statistics are derived using a functional central limit theorem for càdlàg
martingales. We also study the asymptotic power of our tests under some lo-
cal alternatives. Our procedure is easily implementable and does not require
any knowledge of covariates. A numerical study reveals the good perfor-
mances of the method. We also present two applications of our tests to real
data sets.

Index Terms — Functional Statistic, Cox Process, Test Statistic, Local alter-
native, Nonparametric statistics, Martingale Theory, Skorokhod Topology.
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1 Introduction
Count process formulation is commonly used to describe and analyze many kind
of data in sciences and engineering. A special class of such processes that re-
searchers across in different fields frequently encounter are the so-called Cox pro-
cesses or doubly stochastic Poisson processes. Compared to the standard Poisson
process, the key feature of a Cox process is that its arrival rate is stochastic, de-
pending on some covariate. In other words, if we let T > 0 the observation period,
N = (Nt)t∈[0,T ] the Cox process and Λ = (Λ(t))t∈[0,T ] the (stochastic) cumulative
arrival rate then, conditioning on Λ , the distribution of N is that of a Poisson pro-
cess with cumulative intensity Λ . The benefit of randomness in the cumulative
intensity lies in the fact that the statistician can take into account auxiliary infor-
mations, thus leading to a better model. For general references, we refer the reader
to the monographies by Cox and Isham (1980), Karr (1991) and Kingman (1993).

In actuarial sciences and risk theory for instance, the number of claims in the
risk model may be represented by a Cox process. In this area, the central quantity
is the ruin probability, that is the probability that the surplus of the insurer is
below zero at some time (see e.g., Björk and Grandell, 1988; Grandell, 1991;
Schmidili, 1996). Cox process also appears in biophysics and physical chemistry
(see e.g., Kou et al., 2005; Kou, 2008; Zhang and Kou, 2010). In these fields,
experimental data consist of photon arrival times with the arrival rate depending
on the stochastic dynamics of the system under study (for example, the active
and inactive states of an enzyme can have different photon emission intensities);
by analyzing the photon arrival data, one aims to learn the system’s biological
properties. Cox process data arise in neuroscience, to analyse the form of neural
spike trains, defined as a chain of action potentials emitted by a single neuron
over a period of time (see e.g., Gerstner and Kistler, 2002; Reynaud-Bourret et
al., 2014). Finally mention astrophysics as another area where Cox process data
often occur (see e.g., Scargle, 1998; Carroll and Ostlie, 2007).

In general, it is tempting to associate to a model numerous covariates, and
this possibly abusively. With this kind of abuse, one may consider a Cox process
model though a Poisson process model is satisfactory. In this paper, we elaborate a
nonparametric test statistic to highlight the Poisson nature of a Cox process. More
precisely, based on i.i.d. copies of N, we construct a nonparametric test statistic
for H0: N is a Poisson process vs H1: N is not a Poisson process. This setting of
i.i.d. copies of N is justified by the fact that in many situations, the duration of
observation is limited but the number of observed paths is large.

Among the various possibilities to elaborate a test statistic devoted to this
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problem, one could estimate both functions t 7→ E[Nt |Λ ] and t 7→ ENt and test
whether these functions are equal. However, this approach suffers from two
main drawbacks, that is curse of dimensionality (whenever Λ takes values in a
high-dimensional space) and knowledge a priori on Λ . Another approach is to
test whether time-jumps of N are Poisson time-jumps; in this direction, we refer
the reader to the paper by Reynaud-Bourret et al. (2014), in which a modified
Kolmogorov-Smirnov statistic is used.

In this paper, we elaborate and study a test statistic based on the observation
that a Cox process is a Poisson process if, and only if its mean and variance func-
tion are equal. As we shall see, this approach leads to a very simple and easily
implementable test.

The paper is organized as follows. In Section 2, we first present the test statis-
tic, then we establish asymptotic performances dedicated to the problem of H0 vs
H1. The case of a local alternative is also considered. Section 3 is devoted to a
simulation study. An application to real data is presented in Section 4. The proofs
of our results are postponed to the three last sections of the paper.

2 Tests for Cox processes

2.1 Principle of the test
Throughout the paper, T > 0 is the (deterministic) duration of observation, and

N = (Nt)t∈[0,T ] is a Cox process with aggregate process Λ = (Λ(t))t∈[0,T ], such
that EN4

T < ∞ and ENt 6= 0 for some t ∈]0,T [. Note that we do not assume here
that N has an intensity.

We let m and σ2 the mean and variance functions of N, i.e. for all t ∈ [0,T ] :

m(t) = ENt and σ
2(t) = var(Nt).

Recall that for all t ∈ [0,T ] (see p. 66 in the book by Kingman, 1993) :

σ
2(t) = m(t)+var(E[Nt |Λ ]) = m(t)+var

(
Λ(t)

)
. (2.1)

Hence, σ2(t)≥ m(t) that is, each Nt is overdispersed. Moreover, if m = σ2, then
E[Nt |Λ ] = ENt for all t ∈ [0,T ], thus N is a Poisson process. As a consequence, N
is a Poisson process if, and only if m = σ2. This observation is the key feature for
the construction our test statistic, insofar the problem can be written as follows:

H0 : σ
2 = m vs H1 : ∃t ≤ T with σ

2(t)> m(t).
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From now on, we let the data N(1), · · · ,N(n) to be independent copies of N.
By above, natural test statistics are based on the process σ̂2 − m̂ = (σ̂2(t)−
m̂(t))t∈[0,T ], where m̂ and σ̂2 are the empirical counterparts of m and σ2:

m̂(t) =
1
n

n

∑
i=1

N(i)
t and σ̂

2(t) =
1

n−1

n

∑
i=1

(
N(i)

t − m̂(t)
)2
.

In this paper, convergence in distribution of stochastic processes is intended
with respect to the Skorokhod topology (see Chapter VI in the book by Jacod and
Shiryaev, 2003).

Theorem 2.1. Let B = (Bt)t∈R+ be a standard Brownian Motion on the real line.
Under H0, σ̂2− m̂ is a martingale and

√
n
(
σ̂

2− m̂
) (law)−→

(
B2m(t)2

)
t≤T .

As far as we know, the martingale property for σ̂2− m̂ has not been observed
yet. This property, which is interesting by itself, plays a crucial role in the deriva-
tion of the asymptotic result.

2.2 Testing H0 vs H1

Among the various possibilities of test statistics induced by σ̂2 − m̂, we shall
concentrate in this paper on

Ŝ1 = sup
t≤T

(
σ̂

2(t)− m̂(t)
)
, and Ŝ2 =

∫ T

0

(
σ̂

2(t)− m̂(t)
)
dt.

These test statistics induced by the supremum and the integral are natural to test
if a nonnegative function is equal to 0. Thus, they are chosen so as to respect the
unilateral nature of the problem due to the fact that the alternative hypothesis may
be written H1 : σ2(t)> m(t) for some t ≤ T .

We now present the asymptotic properties of Ŝ1 and Ŝ2.

Corollary 2.2. Let Î 2 =
∫ T

0 (T − t)m̂(t)2dt.
(i) Under H0,

√
n

Ŝ1

m̂(T )
(law)−→ |N (0,2)|, and

√
n

Ŝ2

Î
(law)−→ N (0,4).
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(ii) Under H1,

√
n

Ŝ1

m̂(T )
prob.−→ +∞, and

√
n

Ŝ2

Î
prob.−→ +∞

Hence, the test statistics Ŝ1/m̂(T ) and Ŝ2/Î define asymptotic tests with max-
imal power and the rejection regions for tests of level α ∈]0,1[ are:

R1(α) =
{ Ŝ1

m̂(T )
≥
√

2
n

q1−α/2

}
and R2(α) =

{ Ŝ2

Î
≥ 2√

n
q1−α

}
, (2.2)

where for each β ∈]0,1[, qβ is the N (0,1)-quantile of order β .

Remark. A close inspection of the proof of Theorem 2.2 reveals that a more
general setting may be reached. Indeed, for the test of H0 vs H1, we only need to
assume that N is in some class of overdispersed counting processes (i.e. var(Nt)≥
ENt for all t ∈ [0,T ]) which satisfies the property : var(Nt) = ENt for all t ∈ [0,T ]
if, and only if N is a Poisson process. The archetype of such a class of counting
processes is given by the Cox process, but it is also satisfied by other classes, such
as some subclasses of Hawkes process for instance. In this direction, our test is
more or less a functional version of the classical overdispersion test, that is used
for testing the Poisson distribution of a sequence of count data (see for instance
Rao and Chakravarti, 1956 or Bohning, 1994). Recall that overdispersion tests are
widely used in actuarial science in the study of claims counts (e.g. Denuit et al.,
2007) .

2.3 Local alternative
By above, both tests defined by the rejection regions in (2.2) are consistent. The

aim of this section is to introduce a local alternative in view of a comparison of
the asymptotic power of the tests. We refer the reader to Chapter 14 in the book
by van der Vaart (1998) for a general overview on local alternatives.

In this section, we assume in addition that the Cox process N has an intensity
λ = (λ (t))t∈[0,T ], i.e. with probability 1, Λ is absolutely continuous, and

Λ(t) =
∫ t

0
λ (s)ds, ∀t ∈ [0,T ].
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We introduce a vanishing sequence of positive numbers (dn)n, and we consider
the case of a local alternative defined as follows:

Hn
1 : With probability 1, λ = λ0 +dn∆ , where λ0 : [0,T ]→ R+ is a bounded

non-null function and ∆ = (∆t)t∈[0,T ] is a stochastic process with

sup
t∈[0,T ]

E∆
6
t < ∞ and var

(∫ t

0
∆sds

)
> 0 for some t ∈ [0,T ].

When n gets larger and Hn
1 holds, N is becomes closer to a Poisson process. Thus,

(dn)n has to be understood as a separation speed from Hn
1 to the null hypothesis

H0.
In particular, next result states that in view of a consistent test for H0 vs Hn

1, it
is necessary and sufficient that d2

n tends to 0 slower than 1/
√

n.

Theorem 2.3. Let B = (Bt)t∈R+ be a standard Brownian Motion on the real line.
Assume that Hn

1 holds, and denote by m0 and v the functions defined for all t ∈
[0,T ] by

m0(t) =
∫ t

0
λ0(s)ds, and v(t) = var

(∫ t

0
∆sds

)
.

Moreover, we let I2
0 =

∫ T
0 (T − t)m0(t)2dt.

(i) If
√

nd2
n → ∞, then

√
n

Ŝ1

m̂(T )
prob.−→ +∞, and

√
n

Ŝ2

Î
prob.−→ +∞.

(ii) If
√

nd2
n → d < ∞, then

√
n

Ŝ1

m̂(T )
(law)−→ 1

m0(T )
sup
t≤T

(
B2m0(t)2 +dv(t)

)
, and

√
n

Ŝ2

Î
(law)−→ 2N (0,1)+

d
I0

∫ T

0
v(t)dt.

In the problem H0 vs Hn
1, we consider the tests defined by the rejection regions

in (2.2), with α ∈]0,1[. For a power study, we assume from now on that Hn
1 holds.

By above, if
√

nd2
n → d < ∞,

lim
n→∞

P
(
R2(α)

)
= 1−Φ

(
q1−α −

d
2I0

∫ T

0
v(t)dt

)
< 1, (2.3)
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where Φ stands for the repartition function of the N (0,1) distribution. However,
we only have

limsup
n→∞

P
(
R1(α)

)
≤ P

( 1
m0(T )

sup
t≤T

(
B2m0(t)2 +dv(t)

)
≥
√

2q1−α/2

)
< 1,

according to the Portmanteau Theorem, as the limit distribution may have a mass
at point

√
2q1−α/2. At least, we deduce from above and part (i) of Theorem 2.3

that both tests defined by R1(α) and R2(α) are consistent if, and only if
√

nd2
n →

∞.
In the rest of the section, we assume that

√
nd2

n → d < ∞. For a comparison
of the tests, we need an additional assumption ensuring that the limit distribu-
tion associated with statistic Ŝ1 is continuous. To this aim, we suppose now that
λ0(t)> 0 for all t ∈ [0,T ], and we let `0 the function such that `0(t) = 2m0(t)2 for
all t ∈ [0,T ]. Then, `0 is a continuous and increasing function with `0(0) = 0, and

sup
t≤T

(
B`0(t)+dv(t)

)
= sup

s≤`0(T )

(
Bs +dv◦ `−1

0 (s)
)
. (2.4)

Now observe that function v◦`−1
0 is absolutely continuous. Thus, by the Girsanov

Theorem (Revuz and Yor, 1999), there exists a probability measure Q such that
the distribution of the random variable in (2.4) equals the distribution under Q
of the supremum of a standard Brownian Motion over [0, `0(T )]. According to
Proposition III.3.7 in the book by Revuz and Yor (1999), this distribution is con-
tinuous, which proves that the distribution of the random variable in (2.4) is also
continuous. As consequence, the Portmanteau Theorem and Theorem 2.3 (ii) give

lim
n→∞

P
(
R1(α)

)
= P

( 1
m0(T )

sup
s≤`0(T )

(
Bs +dv◦ `−1

0 (s)
)
≥
√

2q1−α/2

)
.

Unfortunately, the latter probability is not known, except for some special cases
that we now study.

In addition to Hn
1, we suppose that λ0(t) = λ0 > 0 and ∆t = Z for all t ∈ [0,T ],

where Z is a random variable with variance w2. In particular, we study the case
of a small deviation from an homogeneous Poisson process. Then, formula (2.4)
writes

sup
t≤T

(
B`0(t)+dv(t)

)
= sup

s≤2λ 2
0 T 2

(
Bs +

dw2

2λ 2
0

s
)
.

Obviously, we have in this case v(t) = w2t2, m0(t) = λ0t and I2
0 = λ 2

0 T 4/12 for all
t ∈ [0,T ]. Setting x = dw2T , we obtain with Theorem 2.3 (ii) and the distribution

7



of the supremum of a drifted Brownian Motion (see p. 250 in the book by Borodin
and Salminen, 2002):

lim
n→∞

P
(
R1(α)

)
= exp

(√2
λ0

xq1−α/2
)(

1−Φ
(
q1−α/2 +

x√
2λ0

))
+1−Φ

(
q1−α/2−

x√
2λ0

)
.

Moreover, by (2.3):

lim
n→∞

P
(
R2(α)

)
= 1−Φ

(
q1−α −

x√
3λ0

)
.

Assume λ0 = 1 and denote by g1 and g2 respectively the above functions of x.
Figure 1 shows a comparison of these two quantities as functions of x and for
α = 0.05 or α = 0.1. This example suggests a better power for the test induced
by R1(α). The numerical experiments given in the next section also suggest a
better power for the first test.
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Figure 1: Plots of g1 (full lines) and g2 (dashed lines), with α = 0.1 for the curves
on the left, α = 0.05 for the curves on the right.
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3 Simulation study
In this section we illustrate the good properties of our tests with a simulation
study. We consider nMC replications of Monte Carlo simulations and we study the
performances of our tests in terms of asymptotic level and rejection power.

Throughout this section, we fix T = 1. In the following, function λ denotes the
intensity function of N, i.e. the first derivative of its cumulative intensity function
Λ .

3.1 Level study
We consider the following model for the asymptotic level study,

λ (t) = β tβ−1, with β > 0. (3.1)

This is the intensity function of a so-called Weibull process, which is frequently
used in Reliability Theory for instance. Remark that function λ is decreasing for
β < 1, constant for β = 1 and increasing for β > 1.

In Table 1 we evaluate the empirical rejection frequency of both tests using the
rejection regions defined in (2.2) for levels α = 5% and α = 10%. This evaluation
is based on 10,000 Monte Carlo simulations (for each value of β ∈ {1/2,1,2}),
with n = 100 and 500 replications of the model. We note that test statistic Ŝ1
has a similar behavior than test statistic Ŝ2 at this range. For both statistics, the
empirical rejection frequency is close to the nominal value even with the smallest
sample size n = 100.

3.2 Rejection power study
Model 1. For the asymptotic power study, we first consider the model defined by

λ (t) = exp(θZt), (3.2)

with Z ∼ 2+Beta(1
2 ,

1
2) and θ ∈ [0,1]. Figure 2 represents the empirical rejection

frequency for different values of θ between 0 and 1 in model (3.2). For θ = 0,
the simulated process is an homogeneous Poisson process with intensity 1. The
process deviates from the homogeneous Poisson process with the increase of θ .
We observe on figure 2 that both tests catch this behavior for small θ ’s. In both
cases the power goes to 1 for higher values of θ . The test statistic Ŝ1 has better
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β = 1/2 β = 1 β = 2
n 100 500 100 500 100 500

α = 5%

Ŝ1 6.55 5.84 5.99 5.52 5.69 5.56
Ŝ2 6.27 5.38 5.74 5.44 6.00 5.71

α = 10%

Ŝ1 10.96 10.29 10.25 9.95 10.45 10.25
Ŝ2 10.55 10.05 10.38 10.02 10.29 10.06

Table 1: Empirical rejection frequency (%) for nMC = 10,000 .

performances as its power curve increases faster that of test statistic Ŝ2.

Model 2. We define the second model as follows,

λ (t) = exp(θ sin(Zt)), (3.3)

with (Zt)t∈[0,1] a standard Brownian Motion and θ ∈ [0,1]. This model differs
from the previous one as the covariate depends on the time variable. Figure 3
represents the empirical rejection frequency for θ varying in [0,3] in model (3.3).
The same remarks as for model (3.2) apply here. Note that the two test statistics
look closer on this example.

4 Application to real data

4.1 Analysis of some arrival times in a call center
The use of Poisson processes has been often considered as a first approach for
modeling the arrival times in call centers and more generally queue systems, e.g.
see Asmussen (2003) for the nice theory developed around this assumption.

As in the papers by Brown et al. (2005) and Mandelbaum et al. (2000), we
consider a call center for an anonymous Israel’s banks. A description of the calls
received over the year 1999 is available online1. The call center is open on week-

1http://ie.technion.ac.il/serveng/callcenterdata/
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Figure 2: Empirical rejection frequency under (3.2) for nMC = 10,000, 100 and
500 trajectories and α = 5%. The red horizontal line represents the value of α .

days (Sunday to Thursday in Israel), from 7 A.M. to midnight, and the calls are
separated in different classes, depending on the needs of the customers. Each call
can be described as follows. A customer calls one of the phone numbers of the
call center. Except for rare busy signals, the customer is then connected to an
interactive voice respond unit (IVR or VRU) and identifies himself/herself. While
using the VRU, the customer receives recorded information. He/She can choose
to perform some self-service transactions (∼ 65% of the calls) or indicate the need
to speak with an agent (∼ 35%). Here, we are interested in the latter, which repre-
sents roughly 30,000 to 40,000 calls per month. Each call record in the database
also includes a categorical description of the type of service requested. The main
call types are regular (PS in the database), stock transaction (NE), new or poten-
tial customer (NW), and Internet assistance (IN). Mandelbaum et al. (2000) and
Brown et al. (2005) described the process of collecting and cleaning the data and
provided complete descriptive analysis of the data.
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Figure 3: Empirical rejection frequency under (3.3) for nMC = 1,000, 100 and
500 trajectories and α = 5%. The red horizontal line represents the value of α .

In this study, we concentrate on IN calls arriving between 3:25 P.M. and 3:35
P.M. on all weekdays of year 1999. Times at which calls enter the VRU represent
the arrival times of a counting process. The dataset then consists in 258 trajectories
of this type, that we can assume to be realizations of i.i.d. Cox processes.

The results of the statistical study are presented in Table 2. One can see that
the null hypothesis H0 is highly rejected using both statistics. This result suggests
that even on a short period of time, these arrival times, which depend on a complex
human behavior, seem to be strongly influenced by some covariates. One might
easily imagine that weather conditions or other company intrinsic variables (e.g.
number of recent opened accounts) could reduce this overdispersion and help to
explain the number of IN phone calls.

Finally mention that Brown et al. (2005) also studied IN calls but did not
reject the Poisson assumption. However, their study consists in testing the expo-
nential distribution for the interarrival times of IN calls occurring in a single day,
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Ŝ1 Ŝ2
p-values 1.95×10−6 1.05×10−6

Table 2: p-values of both tests for the call center dataset.

which is not compatible with our asymptotic and cannot help to determine if some
covariates influence the daily calls process.

4.2 Analysis of the scoring times of a soccer team
As seen in Heuer et al. (2010), Poisson processes may also be used to model
scoring goals during a soccer match. Nevertheless, one could suspect the influence
of some covariates such as the behavior of the spectators or fitness fluctuations of
the team under study. Thus, we propose to test the Poisson process assumption
H0 for the scoring times of Arsenal soccer club first team.

To this end, we collected on the SoccerSTATS.com website their scoring times
(in minutes) for each match in ”Premier League” over three seasons (from 2012
to 2015), for a total of 229 matches. For each match, the scoring times of the team
define the jump times of 229 counting paths. We can assume that these data are
i.i.d. realizations of Cox processes.

The results of the statistical study are presented in Table 3. For both statistics
Ŝ1 and Ŝ2, we cannot reject the null hypothesis H0 and the Poisson process seems
to be a reasonable approximation for these counting processes.

Ŝ1 Ŝ2
p-values 0.419 0.298

Table 3: p-values of both tests for the soccer goals dataset.

Recall that the analysis in Heuer et al. (2010) also suggests that the Poisson
process is relevant for modeling the scoring goals of a given team in the German
Bundesliga.

5 Proof of Theorem 2.1
In the rest of the paper, we assume for notational simplicity that T = 1. We let
M̂ = (M̂t)t∈[0,1] the process defined by M̂t = σ̂2(t)− m̂(t) and τ̂ = (τ̂t)t∈[0,1] is the

13



process such that for all t ∈ [0,1],

τ̂t =
4

n−1

∫ t

0
σ̂

2(s)dm(s).

Martingale properties and predictable σ -field are implicitly with respect to the
natural filtration generated by the sample N(1), · · · ,N(n). As usual, 〈X〉 stands for
the predictable quadratic variation of the martingale X .

5.1 Auxiliary results
Lemma 5.1. Under H0, the process M̂ is a martingale, and 〈M̂〉= τ̂ .

Proof. First we prove that M̂ is a martingale. Observe that for all t ∈ [0,1],

σ̂
2(t) =

1
n−1

n

∑
k=1

(
N(k)

t
)2− n

n−1
m̂(t)2. (5.1)

We now compute M̂t as a sum of stochastic integrals. In the sequel, we let N̄(k) =
N(k)−m. Note that N̄(k) is a martingale. According to the integration by parts
formula (Proposition 0.4.5 in the book by Revuz and Yor, 1999), we have

n

∑
k=1

(
N(k)

t
)2

=
n

∑
k=1

[
2
∫ t

0
N(k)

s− dN(k)
s +N(k)

t

]
= 2

n

∑
k=1

∫ t

0
N(k)

s− dN(k)
s +nm̂(t)

= 2
n

∑
k=1

∫ t

0
N(k)

s− dN̄(k)
s +2n

∫ t

0
m̂(s−)dm(s)+nm̂(t). (5.2)

Moreover, by the integration by parts formula,

m̂(t)2 = 2
∫ t

0
m̂(s−)dm̂(s)+∑

s≤t

(
∆ m̂(s)

)2
.

Using the fact that two independent Poisson processes do not jump at the same
time (Proposition XII.1.5 in the book by Revuz and Yor, 1999), we deduce that

∑
s≤t

(
∆ m̂(s)

)2
=

1
n2 ∑

s≤t

( n

∑
k=1

∆N(k)
s

)2
=

1
n2 ∑

s≤t

n

∑
k=1

∆N(k)
s

=
1
n

m̂(t).

14



Hence,

m̂(t)2 = 2
∫ t

0
m̂(s−)dm̂(s)+

1
n

m̂(t).

Then, combining (5.1) and (5.2), we obtain

M̂t = −m̂(t)+
1

n−1

n

∑
k=1

(
N(k)

t
)2− n

n−1
m̂(t)2

=
2

n−1

n

∑
k=1

∫ t

0
N(k)

s− dN̄(k)
s −

2n
n−1

∫ t

0
m̂(s−)d

(
m̂(s)−m(s)

)
(5.3)

Since m̂−m and each of the N̄(k)’s are martingales and the integrands are pre-
dictables, we deduce that all integrals in this formula are local martingales. It is
a classical exercise to prove that they are of class DL (see Definition IV.1.6 in the
book by Revuz and Yor, 1999), so that they are martingales, as well as M̂.

In view of computing the predictable quadratic variation of M̂, we first observe
that by the integration by parts formula,

M̂2
t = 2

∫ t

0
M̂s−dM̂s +∑

s≤t

(
∆M̂s

)2
. (5.4)

But, by (5.3),

∆M̂s =
2

n−1

n

∑
k=1

N(k)
s− ∆N(k)

s −
2n

n−1
m̂(s−)∆ m̂(s).

Again, we shall make use of the fact that two Poisson processes do not jump at
the same time. Hence, if s is a time-jump for N(k),

∆M̂s =
2

n−1
(
N(k)

s− − m̂(s−)
)
=

2
n−1

(
N(k)

s− − m̂(s−)
)
∆N(k)

s . (5.5)

Thus,

∑
s≤t

(
∆M̂s

)2
= ∑

s≤t

n

∑
k=1

(
∆M̂s

)21{∆N(k)
s =1}

=
4

(n−1)2

n

∑
k=1

∫ t

0

(
N(k)

s− − m̂(s−)
)2dN(k)

s .
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By (5.4), we have

M̂2
t = 2

∫ t

0
M̂s−dM̂s +

4
(n−1)2

n

∑
k=1

∫ t

0

(
N(k)

s− − m̂(s−)
)2dN̄(k)

s

+
4

(n−1)2

n

∑
k=1

∫ t

0

(
N(k)

s− − m̂(s−)
)2dm(s).

As above, we can conclude from the fact that both M̂ and N̄(k) are martingales that
the first two terms on the right-hand side are martingales. Last term, namely

4
n−1

∫ t

0
σ̂

2(s−)dm(s) =
4

n−1

∫ t

0
σ̂

2(s)dm(s),

where equality holds by continuity of m, is predictable. Hence, it is the predictable
quadratic variation of M̂. �

Lemma 5.2. Under H0, we have :

nEsup
t≤1
|∆M̂t |2→ 0.

Proof. First observe that for all u ∈]0,1[ :

nEsup
t≤1
|∆M̂t |2 ≤ u+nEsup

t≤1
|∆M̂t |21{√nsupt≤1 |∆M̂t |>u}

≤ u+2
∫

∞

0
xP
(√

nsup
t≤1
|∆M̂t |1{√nsupt≤1 |∆M̂t |>u} > x

)
dx

≤ 2u+2
∫

∞

u
xP(
√

nsup
t≤1
|∆M̂t |> x)dx. (5.6)

But, according to (5.5), if t is a time-jump for N(k), we have

∆M̂t =
2

n−1
(
N(k)

t− − m̂(t−)
)
,

and hence,

sup
t≤1
|∆M̂t | ≤

2
n−1

sup
k≤n

sup
t≤1
|N(k)

t − m̂(t)|.

Thus, for all x > 0 :

P(
√

nsup
t≤1
|∆M̂t | ≥ x) ≤ nP

(
sup
t≤1
|N(1)

t − m̂(t)| ≥ (n−1)x
2
√

n

)
≤ 8sup

t≤1
E|N(1)

t − m̂(t)|3 n5/2

(n−1)3x2 ,
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where the last inequality is due to Doob’s Inequality (see Revuz and Yor, 1999)
applied to the martingale N(1)− m̂. A direct calculation shows that that exists a
constant C > 0 (independent of n) such that

sup
t≤1

E|N(1)
t − m̂(t)|3 ≤C.

Consequently, by (5.6) :

nEsup
t≤1
|∆M̂t |2 ≤ 2u+

16Cn5/2

(n−1)3

∫
∞

u

dx
x2

≤ 2u+
16Cn5/2

u(n−1)3 .

Taking for instance u = n−1/4 gives the result. �

5.2 Proof of Theorem 2.1
According to Theorem VIII.3.22 in the book by Jacod and Shiryaev (2003), the
sequence of square integrable martingales (

√
nM̂)n converges in distribution to a

continuous Gaussian martingale M such that 〈M〉 = 2m2 if, for all t ∈ [0,1] and
ε > 0,

〈
√

nM̂〉t → 2m(t)2 and
∫
R×[0,t]

|x|21{|x|>ε}νn(dx,ds)→ 0, (5.7)

both in probability, where νn stands for the predictable compensator of the random
jump measure associated to the martingale

√
nM̂. Regarding the first property, we

know from Lemma 5.1 that

lim
n→∞
〈
√

nM̂〉t = lim
n→∞

nτ̂t = 4
∫ t

0
σ

2(s)dm(s),

in probability. Since σ2 = m under H0, we deduce that limn→∞〈
√

nM̂〉t = 2m(t)2

in probability. In order to prove the second property in (5.7), we fix ε > 0 and we
let U and V be the processes defined for all t ∈ [0,1] by

Ut =
∫
R×[0,t]

|x|21{|x|>ε}νn(dx,ds) and Vt = n ∑
s≤t
|∆M̂s|21{√n|∆M̂s|>ε}.
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Observing that U is L-dominated by the increasing adapted process V , we deduce
from the Lenglart Inequality (see p.35 in the book by Jacod and Shiryaev, 2003)
that for all t ∈ [0,1] and α,η > 0 :

P(Ut ≥ η)≤ 1
η

(
α +Esup

s≤t
∆Vs
)
+P(Vt ≥ α).

But, {Vt > 0} = {
√

nsups≤t |∆M̂s| > ε} and sups≤t ∆Vs ≤ nsups≤t |∆M̂s|2. Thus,
letting α ↘ 0, we obtain with the help of Markov’s Inequality :

P(Ut ≥ η) ≤ n
η
Esup

s≤t
|∆M̂s|2 +P(

√
nsup

s≤t
|∆M̂s|> ε)

≤
( 1

η
+

1
ε2

)
nEsup

s≤t
|∆M̂s|2.

We conclude from Lemma 5.2 that Ut converges to 0 in probability. Hence, both
properties in (5.7) are satisfied so that the sequence of square integrable martin-
gales (

√
nM̂)n converges in distribution to a continuous Gaussian martingale M,

such that 〈M〉= 2m2. The Dambis-Dubins-Schwarz Theorem (see Theorem V.1.6
in the book by Revuz and Yor, 1999) then gives M = B2m2 , where B is a standard
real Brownian Motion. �

6 Proof of corollary 2.2
(i) Let D be the space of càdlàg functions from [0,1] to R, equipped with the
Skorokhod topology. By continuity of the application D 3 x 7→ supt≤T x(t), we
deduce from Theorem 2.1 that

√
nŜ1 =

√
nsup

t≤1

(
σ̂

2(t)− m̂(t)
) (law)−→ sup

t≤1
B2m(t)2 = sup

t≤2m(1)2
Bt .

According to the reflection principle (Proposition III.3.7 in the book by Revuz
and Yor, 1999), the distribution of the latter term is

√
2m(1)|N (0,1)|, hence the

result with Ŝ1. Similarly, by continuity of D 3 x 7→
∫ 1

0 x(t)dt, we have

√
nŜ2 =

√
n
∫ 1

0

(
σ̂

2(t)− m̂(t)
)
dt

(law)−→
∫ 1

0
B2m(t)2dt,

and the distribution of the limit is N (0,4
∫ 1

0 (1− t)m(t)2dt). Moreover, using
the fact that m̂−m is a martingale, we easily prove with Doob’s inequality that
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supt≤1 |m̂(t)−m(t)| converges in probability to 0. Putting all pieces together and
applying Slutsky’s Lemma gives the result.
(ii) Under H1, there exists t0 ∈ [0,1] such that σ2(t0)> m(t0). Then,
√

nŜ1 ≥
√

n
(
σ̂

2(t0)− m̂(t0)
)

≥
√

n
(
σ̂

2(t0)−σ
2(t0)

)
+
√

n
(
m(t0)− m̂(t0)

)
+
√

n
(
σ

2(t0)−m(t0)
)
.

The latter term tends to +∞, while the central limit theorem (that can be used
because EN4

1 < ∞) shows that the sequences induced by the first two terms on the
right-hand side are stochastically bounded, hence the result with Ŝ1. Regarding
Ŝ2, we first observe that under H1,

∫ 1
0
(
σ2(t)−m(t)

)
dt > 0, because σ and m are

right-continuous functions, and σ2 ≥ m. Thus, we only need to prove that the
sequences (

√
n
∫

0(m(t)− m̂(t))dt)n and (
√

n
∫ 1

0 (σ̂
2(t)−σ2(t))dt)n are stochasti-

cally bounded. Let us focus on the second sequence. We have

√
n
∫ 1

0

(
σ̂

2(t)−σ
2(t)
)
dt =

√
n
( 1

n−1

n

∑
i=1

∫ 1

0

(
N(i)

t
)2dt−E

∫ 1

0
N2

t dt
)

−
√

n
∫ 1

0

( n
n−1

m̂(t)2−m(t)2
)

dt. (6.1)

Since EN4
1 < ∞, the sequence induced by the first term on the right-hand side is

stochastically bounded according to the central limit theorem. Regarding the latter
term in (6.1), we observe that

√
n
∣∣∣∫ 1

0

( n
n−1

m̂(t)2−m(t)2
)

dt
∣∣∣ ≤ 2

√
n
(
m̂(1)+m(1)

)∫ 1

0

∣∣m̂(t)−m(t)
∣∣dt

+m(1)2.

By the Cauchy-Schwarz inequality, there exists a constant C > 0 such that the
L1-norm of the leftmost term is bounded by

C
[
1+
√

nE1/2
(∫ 1

0

∣∣m̂(t)−m(t)
∣∣dt
)2]

≤ C
[
1+
(∫ 1

0
var(Nt)dt

)1/2]
≤ C

(
1+EN2

1
)
.

Thus, (
√

n
∫ 1

0 (σ̂
2(t)−σ2(t))dt)n is stochastically bounded. �
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7 Proof of Theorem 2.3
In this section, we assume that Hn

1 holds, hence in particular N is a Cox process
with intensity λ = λ0 +dn∆ that depends on n.

For simplicity, we let Z(n) = (Z(n)
t )t∈[0,1] the centered process defined for all

t ∈ [0,1] by
Z(n)

t =
√

n
(
σ̂

2(t)−σ
2(t)+m(t)− m̂(t)

)
.

7.1 Auxiliary results
Lemma 7.1. Let k = 1, · · · ,6. Then, there exists C > 0 independent of n such that
for all s, t ∈ [0,1],

E|Nt−Ns|k ≤C|t− s|k.

Proof. Without loss of generality, we assume that s≤ t. Recall that the distribution
of Nt −Ns given Λ follows a Poisson distribution with parameter Λ(t)−Λ(s) =∫ t

s λ (u)du, and that the k-th moment of a Poisson distribution with parameter µ >
0 is bounded by some constant C > 0 multiplied by µk. Thus, using Jensen’s
Inequality, we get

E
(
Nt−Ns

)k
= EE

[(
Nt−Ns

)k|Λ
]

≤ CE
(∫ t

s
λ (u)du

)k

≤ C(t− s)k−1
∫ t

s
Eλ

k(u)du

≤ 2kC
(

sup
t∈[0,1]

λ0(t)k + sup
t∈[0,1]

E|∆ k
t |
)
(t− s)k,

hence the lemma. �

Lemma 7.2. For all t ∈ [0,1], ((Z(n)
t )2)n is a uniformly integrable sequence.

Proof. According to the Rosenthal Inequality and Lemma 7.1, there exists a con-
stant C > 0 that does not depend on n such that

n3/2E|m̂(t)−m(t)|3 ≤C and n3/2E|σ̂2(t)−σ
2(t)|3 ≤C.

Thus, we deduce that supnE|Z
(n)
t |3 <∞, which implies that ((Z(n)

t )2)n is uniformly
integrable. �
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Lemma 7.3. The sequence of processes (Z(n))n is tight.

Proof. For an integrable real random variable Z, we let {Z} = Z −EZ. First
observe that we have, for all t ∈ [0,1] :

Z(n)
t =

√
n
( 1

n−1
EN2

t +
1

n−1

n

∑
i=1

{(
N(i)

t
)2}−{m̂(t)}2 +{m̂(t)}

(
1−2m(t)

))
.

We shall make use of the classical criterion of tightness (see e.g. Theorem 13.6 in
the book by Billingsley, 1999). Clearly, the sequence will be proved to be tight if
if we prove that each of the sequences of processes defined by

X1,n =
√

n{m̂}, X2,n =
√

n{m̂}2 and X3,n =

√
n

n−1

n

∑
i=1

{(
N(i)

t
)2}

satisfy the inequality

E
(
Xk,n

t −Xk,n
s
)2 ≤C

(
F(t)−F(s)

)2
, ∀0≤ s≤ t ≤ 1, (7.1)

for a constant C > 0 and some nondecreasing and continuous function F , both
independent of n. We only prove it for X3,n. In the sequel, C > 0 is a constant,
independent of n, and whose value may change from line to line. Observe that

E
(
X3,n

t −X3,n
s
)2

=
n

n−1
E
({

N2
t
}
−
{

N2
s
})2

≤ CE
(
N2

t −N2
s
)2

+C
(
EN2

t −EN2
s
)2

≤ C
{
E(Nt−Ns)

4}1/2
+CE(Nt−Ns)

2,

by Cauchy-Schwarz. Then, Lemma 7.1 gives

E
(
X3,n

t −X3,n
s
)2 ≤C(t− s)2.

Consequently, (7.1) holds for k = 3, with the continuous and nondecreasing func-
tion F(t) = t. �

Lemma 7.4. Let B = (Bt)t∈R+ be a real and standard Brownian Motion. Then, if
m0 is the function defined for all t ∈ [0,1] by m0(t) =

∫ t
0 λ0(u)du, we have

Z(n) (law)−→
(
B2m2

0(t)
)

t∈[0,1].
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Proof. In the sequel, for p = 1 or 2, we let

m̂p(t) =
1
n

n

∑
i=1

(N(i)
t )p and mp(t) = EN p

t .

Let k ≥ 1 and 0 ≤ t1 < · · · < tk ≤ 1. According to the central limit theorem for
triangular arrays (for instance the Lyapounov condition is easily seen to be true
according to Lemma 7.1), we know that the 2k-dimensional random vector defined
by

√
n
(

m̂1(t j)−m1(t j)
m̂2(t j)−m2(t j)

)
j=1,··· ,k

converges to a normal distribution. Now apply the δ -method to deduce that the
3k-dimensional random vector

√
n

 m̂1(t j)−m1(t j)
m̂2(t j)−m2(t j)

m̂1(t j)
2−m1(t j)

2


j=1,··· ,k

also converges to a normal distribution. Thus,
√

n
(
m̂2(t j)− m̂1(t j)

2−m2(t j)+m1(t j)
2− m̂1(t j)+m1(t j)

)
j=1,··· ,k,

converges to a k-dimensional normal distribution with mean µ and covariance
matrix Σ , as well as (Z(n)

t j ) j=1,··· ,k. Since for all j = 1, · · · ,k, m̂(t j) and σ̂2(t j) are

unbiased estimators of m(t j) and σ2(t j), EZ(n)
t j = 0. Thus, by Lemma 7.2, µ = 0.

We now proceed to compute the variance matrix Σ . Let i, j = 1, · · · ,k. With the
notation {Z}= Z−EZ for a integrable real random variable Z, we easily see that
the difference between EZ(n)

ti Z(n)
t j and

nE
(
{m̂2(ti)}−{m̂2

1(ti)}−{m̂1(ti)}
)(
{m̂2(t j)}−{m̂2

1(t j)}−{m̂1(t j)}
)

tends to 0 as n→ ∞. Moreover, the difference between the latter term and

1
n
E
( n

∑
`=1
{(N(`)

ti )2−N(`)
ti (2m(ti)+1)}

)( n

∑
`=1
{(N(`)

t j )2−N(`)
t j (2m(t j)+1)}

)
,

denoted by A, vanishes as well. But, by independence of processes (N(`))`≤n, we
have

A = E
(
{N2

ti}−{Nti}(2m(t j)+1)
)(
{N2

t j
}−{Nti}(2m(t j)+1)

)
= cov

(
N2

ti − (2m(ti)+1)Nti, N2
t j
− (2m(t j)+1)Nt j

)
.
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Recall that, under Hn
1, N is a Cox process with intensity λ = λ0 + dn∆ . Since

(dn)n tends to 0, easy calculations prove that, as n→ ∞, A converges to

cov
(
P2

ti − (2m0(ti)+1)Pti, P2
t j
− (2m0(t j)+1)Pt j

)
, (7.2)

where P is a Poisson process with intensity λ0. Now use the properties of the
Poisson process and the fact that, for a random variable Q that follows a Poisson
distribution with parameter µ > 0, we have

E(Q−µ)2 = E(Q−µ)3 = µ and E(Q−µ)4 = µ +3µ
2.

Moreover, for all t ∈ [0,1], P2
t −(2m0(t)+1)Pt +m0(t)2 = {Pt}2−{Pt}. We easily

deduce from the above properties and the independence of the increments of a
Poisson process that the covariance in (7.2) equals 2m0(ti∧ t j)

2. Thus, by Lemma
7.2, the (i, j) term of matrix Σ is given by the previous formula. The sequence of
processes (Z(n))n being tight according to Lemma 7.3, we have proved that Z(n)

converges in distribution to a centered gaussian process Z such that if s, t ∈ [0,1],
EZsZt = 2m0(s∧ t)2. Such a gaussian process can be written B2m2

0
where B is a

standard Brownian Motion on the line, hence the result. �

7.2 Proof of Theorem 2.3
Recall that, by assumption, v(t) 6= 0 for some t ∈ [0,1]. Observe that according to
(2.1), we have under Hn

1, for all t ∈ [0,1] :

σ
2(t)−m(t) = var

(
Λ(t)

)
= var

(∫ t

0

(
λ0(s)+dn∆s

)
ds
)

= d2
nv(t).

Thus, √
nŜ1 = sup

t≤1

(
Z(n)

t +
√

nd2
nv(t)

)
.

Moreover, it is an easy exercise to prove that m̂(T )→ m0(T ) and Î→ I0, both in
probability. If

√
nd2

n → ∞, we then have by Lemma 7.4,

√
n

Ŝ1

m̂(T )
prob.−→ +∞,
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and similarly for Ŝ2, hence (i). We now assume that
√

nd2
n → d < ∞. By Lemma

7.4 and Slutsky’s Lemma, the continuity of the underlying functional gives :

√
n

Ŝ2

Î
(law)−→ 1

I0

∫ 1

0

(
B2m0(t)2 +dv(t)

)
dt.

Observing now that the distribution of the latter term equals

2N (0,1)+
d
I0

∫ 1

0
v(t)dt

gives the result for Ŝ2. Regarding Ŝ1,

√
n

Ŝ1

m̂(T )
(law)−→ 1

m0(T )
sup
t≤1

(
B2m0(t)2 +dv(t)

)
,

hence the theorem. �
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Denuit, M., Maréchal, X., Pitrebois, S., and Walhin, J. F. (2007). Actuarial mod-
elling of claim counts: Risk classification, credibility and bonus-malus systems,
John Wiley & Sons.
Gerstner, W. and Kistler, W. (2002). Spiking Neuron Models: Single Neurons,
Populations, Plasticity, Cambridge Univ. Press, Cambridge.
Grandell, J. (1991). Aspects of Risk Theory, Springer-Verlag, New-York.
Heuer, A., Mueller, C., and Rubner, O. (2010). Soccer: Is scoring goals a pre-
dictable Poissonian process ? EPL (Europhysics Letters), 89(3), 380-7.
Jacod, J. and Shiryaev, A.N. (2003). Limit Theorems for Stochastic Processes,
2nd Ed., Springer, New-York.
Karr, A.F. (1991). Point Processes and their Statistical Applications, 2nd Ed.,
Marcel Dekker, New-York.
Kingman, J.F.C. (1993). Poisson Processes, Oxford Studies in Probability, Ox-
ford.
Kou, S. C. (2008). Stochastic networks in nanoscale biophysics: Modeling enzy-
matic reaction of a single protein, J. Amer. Statist. Assoc., 961-5.
Kou, S. C., Xie, X. S. and Liu, J. S. (2005). Bayesian analysis of single-molecule
experimental data (with discussion), J. Roy. Statist. Soc. Ser. C, 469-6.
Mandelbaum, A., Sakov, A., and Zeltyn, S. (2000). Empirical analysis of a call
center, URL http://iew3. technion. ac. il/serveng/References/ccdata. pdf. Techni-
cal Report.
Rao, C. R., and Chakravarti, I. M. (1956). Some small sample tests of significance
for a Poisson distribution, Biometrics, 12(3), 264-282.
Reynaud-Bourret, P., Rivoirard, V., Grammont , F., Tuleau-Malot, C. (2014).
Goodness-of-fit tests and nonparametric adaptive estimation for spike train analy-
sis, Journal of Mathematical Neuroscience, 4:3.
Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion,
3rd Ed., Springer, New-York.
Scargle, J. D. (1998). Studies in astronomical time series analysis. V. Bayesian
blocks, a new method to analyze structure in photon counting data, Astrophys. J.,
405-8.
Schmidili, H. (1996). Lundberg inequalities for a Cox model with a piecewise
constant intensity, J. Applied Probability, 196-210.
van der Vaart, A.W. (1998). Asymptotic Statistics, Cambridge Series in Statistical
and Probabilistic Mathematics.

25



Zhang, T. and Kou, S.C. (2010). Nonparametric inference of doubly stochastic
Poisson process data via the kernel method, Ann. Applied Statist., 1913-1941.

26


	Introduction
	Tests for Cox processes
	Principle of the test
	Testing H0 vs H1
	Local alternative

	Simulation study
	Level study
	Rejection power study

	Application to real data
	Analysis of some arrival times in a call center
	Analysis of the scoring times of a soccer team

	Proof of Theorem 2.1
	Auxiliary results
	Proof of Theorem 2.1

	Proof of corollary 2.2
	Proof of Theorem 2.3
	Auxiliary results
	Proof of Theorem 2.3


