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Abstract

In this paper, we develop a complete methodology for detecting time-varying/non time-varying pa-
rameters in ARCH processes. For this purpose, we estimate and test various semiparametric versions of
the time-varying ARCH model (tv-ARCH) which include two well known non stationary ARCH type
models introduced in the econometric literature. Using kernel estimation, we show that non time-varying
parameters can be estimated at the usual parametric rate of convergence and for a Gaussian noise, we
construct estimates that are asymptotically efficient in a semiparametric sense. Then we introduce two
statistical tests which can be used for detecting non time-varying parameters or for testing the second
order dynamic. An information criterion for selecting the number of lags is also provided. We illustrate
our methodology with several real data sets.

1 Introduction

The modeling of financial data using nonstationary time series has recently received considerable attention
both in econometrics and in statistics. For classical daily series such as stock market indices or currency
exchange rates, the stationarity assumption seems often incompatible with a long history of data and the
necessity of using non stationary ARCH models has been pointed out by several authors. See for instance
Mikosch and Stǎricǎ (2004), Granger and Stǎricǎ (2005), Engle and Rangel (2008), Fryzlewicz et al. (2008)
and the references therein. However, it is difficult to find in the literature a consensus for representing non-
stationary ARCH models. A natural approach is to allow time-varying parameters in the classical ARCH
model of Engle (1982). Such an extension has been proposed by Dahlhaus and Subba Rao (2006) with
the so-called time-varying ARCH model (tv-ARCH). The tv-ARCH processes are defined by the recursive
equations

Xt = ξtσt, σ2
t = a0

( t
T

)
+

p∑
j=1

a j

( t
T

)
X2

t− j, p + 1 ≤ t ≤ T, (1.1)

where for 0 ≤ j ≤ p, a j is a smooth function and ξ a strong white noise with variance 1. Since they can be
locally approximated by stationary ARCH processes, the tv-ARCH processes are called locally stationary
(the notion of local stationarity is introduced in Dahlhaus (1997) for linear processes but the meaning of
local stationarity for the non linear tv-ARCH can be found in Dahlhaus and Subba Rao (2006)). From this
important feature, a nice asymptotic theory can be developed for estimation of parameters, in particular
local inference methods such as the local Quasi-maximum likelihood estimation studied in Dahlhaus and
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Subba Rao (2006), the local weighted least-squares estimation developed in Fryzlewicz et al. (2008) or the
recursive online algorithms considered by Dahlhaus and Subba Rao (2007). In Fryzlewicz et al. (2008),
it was shown that tv-ARCH processes provide good fits and accurate forecasts for some financial series.
However, statistical inference in model (1.1) is complex, even for large samples, because p + 1 functions
have to be estimated using nonparametric methods. Thus, in practice, reducing complexity can be interesting
to improve model fit or forecasts accuracy. For example, Granger and Stǎricǎ (2005) have shown that the
simple model

Xt = σ
( t
T

)
ξt, 1 ≤ t ≤ T, (1.2)

with a smooth deterministic function σ : [0, 1] → R+ can already produce significantly better forecasts for
the returns of the SP&500 index than the classical GARCH(1, 1) model. A process of type (1.2) can be seen
as a tv-ARCH process with zero lag coefficients. Note that model (1.2) does not assume autocorrelation for
the absolute values or the squares of the process (a correlation property often called second order dynamic
in the literature) but only some changes in the unconditional variance. In Granger and Stǎricǎ (2005), it is
argued that most of dynamic of the S&P index can be explained with a time-varying unconditional variance.

But nonstationarity and second order correlation can also be combined in a very simple way, assuming
constant lag coefficients in (1.1):

Xt = ξt

√√√
a0

( t
T

)
+

p∑
j=1

a jX2
t− j. (1.3)

Model (1.3) combine a time-varying unconditional variance compatible with the analysis of Granger and
Stǎricǎ (2005) and a second order dynamic for the series with a single nonparametric component. Note also
that a process (Xt)t defined by equations (1.3) can be written using the multiplicative form

Xt =

√
a0

( t
T

)
· Yt, (1.4)

where

Yt = ξt

√√√√
1 +

p∑
j=1

a j
a0

(
t− j
T

)
a0

(
t
T

) Y2
t− j ≈ ξt

√√√
1 +

p∑
j=1

a jY2
t− j

if we neglect the ratio a0
(

t− j
T

)
/a0

(
t
T

)
which is of order 1+1/T when the function a0 is positive and Lipschitz

continuous over [0, 1]. One can also notice that writing the model with the latter approximation or not
lead to two processes that are both approximated by the same stationary ARCH processes with parameters
a0(u), a1, . . . , ap (see Lemma 1 for this kind of approximation). In the stationary case, we remind that
multiplying an ARCH process by a positive constant is equivalent to multiply the initial intercept coefficient.
Then for a large sample size T , the process (Yt)t behaves as a stationary ARCH process and a0(·) is (up to
a constant) the time-varying unconditional variance of the process (Xt)t. Such a multiplicative form for
ARCH models has been first considered by Engle and Rangel (2008) with the so-called Spline-GARCH
model which writes as model (1.4) but with a GARCH(1, 1) process (Yt)t.

Since the previous models satisfy the inclusions (1.2)⊂ (1.3)⊂ (1.1), a natural question for any real data
set is to test some properties of the lag coefficients. Testing the constancy of the lag coefficients can help
to decide between model (1.3) and model (1.1) while testing the second order dynamic in model (1.3) is
useful to determine if model (1.2) provides a sufficient fit. Statistical tools to help the practitioners to choose
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among the three important specifications described above seems not available in the literature except in a
recent paper of Patilea and Raïssi (2014) which introduces a test for the second order dynamic in model
(1.3).

In this paper, we propose a general approach for estimating an arbitrary subset of non time-varying
coefficients in tv-ARCH processes. Our estimators are

√
T−consistent and we will also study the semi-

parametric asymptotic efficiency of our method when the noise is Gaussian. Using these results, we construct
two statistical tests. The first test can be used to decide whether a given subset of parameters is time-varying
or not. This test is based on a L2 distance between a nonparametric kernel estimator of the coefficients
and the semiparametric estimator introduced in this paper. The second test can be used for deciding if the
constant parameters are different from zero. Various applications can be considered as a simple particular
case of our methodology: testing model (1.3) versus model (1.1), testing model (1.2) versus model (1.3),
estimating parameters and selecting lag variables in models (1.3) or (1.1). When some coefficients are
assumed to be non time-varying in (1.1), the decomposition X2

t = σ2
t +

(
ξ2

t − 1
)
σ2

t leads to semiparametric
inference in a time-varying regression model. Detecting and estimating a parametric component in general
time-varying regression models has been considered recently by Zhang and Wu (2012). However these
authors do not consider the case of tv-ARCH processes with optimal moment condition for the marginal
distribution, asymptotic semi-parametric efficiency for the estimation and Lipschitz continuity for the time-
varying coefficients. Moreover, our approach for estimating non-time varying coefficients is quite different.

We applied our methodology to three real data sets: the daily exchange rates between the US Dollar
and the Euro or between the US Dollar and the Indian Rupee and the FTSE index. For the three series
of interest, a non time-varying intercept is clearly rejected over the considered period. The conclusion for
the lag coefficients depends on the series. In fitting model (1.3), we also found that incorporating non
stationarity reduces the values of lag parameters with respect to the stationary case. Then the time-varying
unconditional variance has an important contribution to volatility.

The paper is organized as follows. In Section 2, we introduce our notations and we describe the basis
of our method for statistical inference in a tv-ARCH model for which some coefficients are assumed to
be non time-varying. In Section 3, we give the asymptotic results for our estimators and we discuss the
problem of semiparametric asymptotic efficiency using the LAN theory. Statistical testing and their practical
implementation are considered in Section 4 and Section 5 is devoted to real data applications. All the proofs
of our results are postponed to the supplementary material which also contains many simulation studies
showing the good behavior of our methodology. The Matlab codes and the data sets discussed in Section 5
are available at the URL

https://github.com/time-varying/tests-and-estimation-for-tv-ARCH-

2 Semiparametric volatility and tv-ARCH processes

2.1 Formulation and notations

In this section, we consider semiparametric versions of model (1.1), assuming that some of the ARCH
coefficients are not time-varying. For t ∈ ~p + 1,T� = [p + 1,T ] ∩ N, let Mt and Nt be two random vectors
of size m and n respectively, with m + n = p + 1 and defined as follows. We split the interval ~0, p� into
two parts {q1, q2, . . . , qm} and {r1, r2, . . . , rn} with q1 < · · · < qm and r1 < · · · < rn. If q1 = 0, we set
Mt =

(
1, X2

t−q2
, . . . , X2

t−qm

)′
, with the convention Mt = 1 if m = 1. If q1 > 0, we set Mt =

(
X2

t−q1
, . . . , X2

t−qm

)′
.

The vector Nt is defined similarly, replacing the q`’s with the r`’s. In particular, the coordinates of the random
vectors Mt and Nt form a bipartition of the set

{
1, X2

t−1, . . . , X
2
t−p

}
. Now, we assume that the coefficients
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vector β =
(
ar1 , . . . , arn

)′ is constant. We also set αt =
(
aq1(t/T ), . . . , aqm(t/T )

)′
. Then the model writes

Xt = ξtσt, σ2
t = M′tαt + N′t β, (2.1)

for t = p+1, . . . ,T . Throughout this paper, we will assume that for all realization ω in the probability space,
(Xt(ω))t≤0 is a path of a stationary ARCH process with noise ξ and coefficients a j(0). From this convention,
one can get a local approximation of a tv-ARCH process by stationary ARCH processes with parameters(
a0(u), . . . , ap(u)

)
. See Lemma 1 in the supplementary material for details.

In Section 4, a statistical test will be given for testing H0:
(
ar1 , . . . , arn

)
is constant. The sequel of this

section is devoted to the statistical inference in model (1.1) under the null hypothesis H0. The corresponding
estimation of parameter β will be necessary to construct the test.

2.2 Estimators of the parametric part β

Considering the square of the process (2.1), statistical inference in model (2.1) can be viewed as a linear
regression problem. More precisely, we have for t ≥ p + 1,

X2
t = M′tαt + N′t β + (ξ2

t − 1)σ2
t . (2.2)

In the sequel, we consider a sequence of weights (Wt)p+1≤t≤T such that Wt is a measurable function of t,T
and X2

t−1, . . . , X
2
t−p. For stating our results, we will only consider sequences of the form

Wt =

γ0 (t/T ) +

p∑
`=1

γ j (t/T ) X2
t− j

−2

, (2.3)

where the γ j’s are positive and Lipschitz continuous functions defined over [0, 1]. The use of this kind of
weights is classical in weighted least squares estimation in order to relax moment conditions on the marginal
distribution or to gain in efficiency. The first goal of our procedure is to estimate the parameter β. This is
the most difficult part of our methodology since a

√
T−consistent estimate is expected. Once an estimate

β̂ with the classical parametric rate of convergence is available, a pointwise estimate of parameter α(·) can
easily be obtained. One can just plug β̂ in (2.2) and apply standard nonparametric methods (in this paper
we will use the local weighted least-squares method studied in Fryzlewicz et al. (2008)). Our aim here is to
first eliminate the nonparametric component M′tαt. Our approach is classical in the setting of partially linear
models, for which the regression function involves a parametric component and a nonparametric component
(see for example Härdle et al. (2000), Chapter 6 for some results in the case of time series). However,
our method is based on nonparametric estimation of linear projections of

√
WtX2

t and
√

WtNt onto the L2

subspace generated by the components of
√

Wt Mt instead of a nonparametric estimation of the conditional
expectations. Moreover, our two-step approach involving some weights and leading to semiparametric
efficient estimates is not common for nonstationary time series and no existing results from the theory of
partially linear models can be used here for our purpose. Here, our approach can be also interpreted as
a partial regression. For stationary ARCH processes, estimation of the whole set of parameters using a
regression model for the squares and least squares estimation has been studied by Bose and Mukherjee
(2003) and Horváth and Liese (2004).

Now we introduce our estimator. We first multiply the two members of equation (2.2) by
√

Wt. If
Pt

(√
WtX2

t

)
and Pt

(√
WtNt

)
denote the (componentwise) orthogonal projection of

√
WtX2

t and
√

WtNt

onto the L2 linear subspace generated by the coordinates of
√

Wt Mt, it is easily seen that√
WtX2

t − Pt
( √

WtX2
t

)
=

( √
WtNt − Pt

( √
WtNt

))′
β + (ξ2

t − 1)
√

Wtσ
2
t . (2.4)
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The use of these orthogonal projections are natural in order to eliminate the nuisance parameter αt and to
get a partial regression involving parameter β only. Let us introduce some notations for expressing these
projections. For t ≥ p + 1, we set

q1,t = s−1
3,t s1,t, q2,t = s−1

3,t s2,t

where
s3,t = E

(
Wt Mt M′t

)
, s1,t = E

(
Wt MtX2

t

)
, s2,t = E

(
Wt MtN′t

)
,

Then setting
Vt = X2

t − M′t q1,t, Ot = Nt − q′2,t Mt,

we have √
WtX2

t − Pt
( √

WtX2
t

)
=

√
WtVt,

√
WtNt − Pt

( √
WtNt

)
=

√
WtOt

and equation (2.4) writes √
WtVt =

√
WtOtβ +

(
ξ2

t − 1
) √

Wtσ
2
t .

The idea is now to use a least squares estimator for β. Of course, in order to obtain a feasible estimator, it is
necessary to first estimate the two quantities q1,t and q2,t. To this end, we consider

ŝ3,b,t =

T∑
i=p+1

kt,i(b)WiMiM′i , ŝ1,b,t =

T∑
i=p+1

kt,i(b)WiMiX2
i ,

ŝ2,b,t =

T∑
i=p+1

kt,i(b)WiMiN′i , kt,i(b) =
K

(
t−i
Tb

)
T∑

i=p+1

K
( t − i

Tb

) ,
where for K is a kernel and b > 0 is a bandwidth parameter. Throughout this paper, the kernel K is assumed
to be absolutely continuous and with support [−1, 1]. Then we set

q̂1,b,t =
(
ŝ3,b,t

)−1 ŝ1,b,t, q̂2,b,t =
(
ŝ3,b,t

)−1 ŝ2,b,t. (2.5)

Now we introduce the following notations. The quantities

V̂t = X2
t − M′t q̂1,b,t, Ôt = Nt − q̂′2,b,t Mt

estimate Vt and Ot respectively. Our estimator of parameter β will be denoted by β̂ and minimizes the
function `W defined by

`W
(
β
)

=

T∑
t=p+1

Wt
(
V̂t − Ô′tβ

)2
.

We get

β̂ =

 T∑
t=p+1

WtÔtÔ′t


−1 T∑

t=p+1

WtÔtV̂t. (2.6)

It is now possible to define an estimate of parameter α(u) for u ∈ [0, 1] by minimizing the function

α 7→

T∑
i=p+1

K
( t − i

Tb′

)
Wi

(
X2

i − M′iα − N′i β̂
)2
,
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for an integer t ∈ ~1,T� such that
∣∣∣u − t

T

∣∣∣ ≤ 1
T (e.g t = [Tu] where [x] denotes the integer part of a real

number x). Since the nonparametric estimation of the function α requires a less restrictive assumption on
the bandwidth parameter than for the estimation of parameter β, we introduce a new bandwidth b′. This
leads to the estimate

α̂t = q̂1,b′,t − q̂2,b′,t · β̂, (2.7)

Note. Expression q̂1,b,t and q̂2,b,t involve the inverse of the matrix S 3,b,t. One can show that

P
(
det

(
ŝ3,t

)
= 0 for some t ≤ T

)
→ 0.

See Lemma 3 and its proof. However invertibility problems can occur when the noise ξ has a mass at point 0,
for instance. For simplicity, we always assume that all these matrices are invertible. Studying our estimator
on an event with probability tending to one only complicates the statements and proofs of our results by
adding some indicator sets but does not change the used approach. One can also show that this distinction
is unnecessary for a noise ξ having a density.

Asymptotic normality of the estimates (2.6) and (2.7) will be derived in the next section as well as some
plug-in versions to get optimal asymptotic results.

3 Asymptotic results

3.1 Estimation of the parametric component

Our first result shows that the estimator (2.6) is
√

T−consistent under some conditions. Here are our main
assumptions.

A1. For j = 1, . . . , p, the function a j is non-negative and Lipschitz continuous. The function a0 is positive
and Lipschitz continuous. Moreover,

c = sup
u∈[0,1]

p∑
j=1

a j(u) < 1.

A2(h). For the integer h ≥ 2, there exists a real number δ ∈ (0, 1) such that E|ξ1|
h(1+δ) < ∞.

Assumption A1 is the classical contraction condition used in Fryzlewicz et al. (2008) to define tv-ARCH
processes. Assumption A2(h), used for different values of h in the sequel, implies a restriction on the noise
distribution. Let us mention that this condition does not restrict the moment condition for the marginal Xt

(in the stationary case, i.e when the a j’s are deterministic, assumption A1 is the necessary and sufficient
condition for the condition E

(
X2

t

)
< +∞).

In the sequel, (Xt(u))t will denote the stationary ARCH process with coefficients (α(u), β). Then we will
use the notation (Mt(u))t (resp. (Nt(u))t, (Wt(u))t) for the stationary approximation of (Mt)t (resp. (Nt)t,
(Wt)t). For example,

Wt(u) =

γ0(u) +

p∑
`=1

γ`(u)X2
t−`(u)

−2

.
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Theorem 1. Assume that assumptions A1 and A2(4) hold, b
√

T → ∞ and
b2
√

T → 0. Then we have the following convergence in distribution:
√

T
(
β̂ − β

)
→T→∞ Nn

(
0,Σ−1

1 Σ2Σ−1
1

)
,

with

Σ1 = E

∫ 1

0
W1(u)

(
N1(u) − q2(u))′M1(u)

)
·
(
N1(u) − q2(u)′M1(u)

)′ du,

Σ2 = Var
(
ξ2

0

)
· E

∫
W1(u)2σ1(u)4 (

N1(u) − q2(u)′M1(u)
)
·
(
N1(u) − q2(u)′M1(u)

)′ du,

and
q2(u) = E−1 (

W1(u)M1(u)M1(u)′
)
E

(
W1(u)M1(u)N1(u)′

)
.

Notes.

1. The bandwidth conditions used in Theorem 1 are classical for estimating the parametric component
in partially linear models. With this restriction, the nonparametric estimation step involved in the
expression of β̂ becomes negligible (i.e for i = 1, 2, q̂i,b,t can be replaced with qi,t without changing
the asymptotic behavior of β̂). Let us explain the rule of these conditions. Some nonparametric
estimates are introduced to approximate the two ratio q̂1,t and q̂2,t. But, up to C/T (C denotes a
positive constant), this two ratio can be seen as some Lipschitz functions of t/T (see Lemma 5 in the
supplementary material). The mean square error for the kernel estimation of a Lipschitz functional
in a regression model with deterministic design is bounded by b2 + 1

Tb (up to a constant). Then our
bandwidth conditions entail that this mean square error converges to zero with a faster rate than

√
T .

2. The goal of the proof of Theorem 1 is to show that the asymptotic distribution of
√

T
(
β̂ − β

)
is the

same as if the two quantities q̂1,b,t, q̂2,b,t are replaced by q1,t, q2,t respectively. Hence, the control
of sums involving differences between these quantities are shown to be negligible. To this end, we
make Taylor expansions and bound the variance of some multiple weighted sums appearing in this
expansion using Lemma 4 given in the supplementary material.

3. The asymptotic variance in Theorem 1 can be estimated consistently using the data. Indeed, the proof
of Theorem 1 given in the supplementary material shows that

Σ1 = lim
T→+∞

1
T

T∑
t=p+1

WtÔtÔ′t a.s.

Moreover, we have

Σ2 = E

∫
W1(u)2

(
X1(u)2 − σ1(u)2

)2 (
N1(u) − q2(u)′M1(u)

)
·
(
N1(u) − q2(u)′M1(u)

)′ du. (3.1)

Then an estimate of Σ2 can be obtained if we replace q2 with q̂2,b,·, σ2
t with a pointwise estimate σ̂2

t
(see Theorem 3) and using the same kind of empirical counterpart as for Σ1.
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The asymptotic variance given in Theorem 1 depends on some weights Wt(u). One can show that its minimal
value (in the sense of non-negative definite matrices) is obtained for the choice W∗t = 1

σ4
t
. Indeed, setting

O1(u) = N1(u) − q2(u)′M1(u) and O∗1(u) = N1(u) − q∗2(u)′M1(u), where

q∗2(u) = E−1
(

M1(u)M1(u)′

σ1(u)4

)
E

(
M1(u)N1(u)′

σ1(u)4

)
,

we have for all u ∈ [0, 1],

Σ1 = E

∫ 1

0
W1(u)O1(u)O∗1(u)′du = E

∫ 1

0
W1(u)σ2

1(u)O1(u)
O∗1(u)′

σ2
1(u)

du.

Then if x, y ∈ Rn, we have from the Cauchy-Schwarz inequality

(
x′Σ1y

)2
≤

x′Σ2x

Var
(
ξ2

0

) × y′Σy.

where Σ = E
∫ 1

0
O∗1(u)O∗1(u)′

σ4
1(u)

du. Now setting x = Σ−1
1 z and y = Σ−1z for z ∈ Rk, we get

(
z′Σ−1z

)2
≤

z′Σ−1
1 Σ2Σ−1

1 z

Var
(
ξ2

0

) × z′Σ−1z.

Then we have proved the following result.

Proposition 1. The lower bound for the asymptotic variance given in Theorem 1 is Var
(
ξ2

0

)
Σ−1, where

Σ =

∫ 1

0
E

(
1

σ1(u)4

(
N1(u) − q∗2(u)′M1(u)

) (
N1(u) − q∗2(u)′M1(u)

)′)
du,

where

q∗2(u) = E−1
(

M1(u)M1(u)′

σ1(u)4

)
E

(
M1(u)N1(u)′

σ1(u)4

)
.

Now, we show that it is possible to construct an estimate of parameter β which has the asymptotic
variance given in Proposition 1. A natural candidate is obtained by replacing the weights Wt in (2.6) with
an estimation of the optimal weights W∗t = 1

σ4
t
. We set Ŵ∗t = 1

σ̂4
t +νT

, where

σ̂2
t = M′t

(
q̂1,b,t − q̂2,b,tβ̂

)
+ N′t β̂

is an estimator of σ2
t . The sequence (νT )T is a sequence of positive real numbers such that νT = o

(
1√
T

)
. The

use of this sequence is just technical and avoids possible small values for the fitted volatility σ̂2
t which is not

ensured to be bounded away from 0 for finite samples. However, for a large sample size, our simulations
show that the choice νT = 0 does not alter the performance of the plug-in estimate. Let us define the
quantities

ŝ∗3,b,t =

T∑
i=p+1

kt,i(b)Ŵ∗i MiM′i , ŝ∗1,b,t =

T∑
i=p+1

kt,i(b)Ŵ∗i MiX2
i ,
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ŝ∗2,b,t =

T∑
i=p+1

kt,i(b)Ŵ∗i MiN′i .

We also set
q̂∗1,b,t =

(
ŝ∗3,b,t

)−1
ŝ∗1,b,t, q̂∗2,b,t =

(
ŝ∗3,b,t

)−1
ŝ∗2,b,t.

Now we introduce the following notations in order to simplify the expression of our estimator.

V̂∗t = X2
t − M′t q̂

∗
1,b,t, Ô∗t = Nt −

(
q̂∗2,b,t

)′
Mt.

Our plug-in estimate of parameter β is now defined by

β̂∗ =

 T∑
t=p+1

Ŵ∗t Ô∗t
(
Ô∗t

)′
−1 T∑

t=p+1

Ŵ∗t Ô∗t V̂∗t .

With respect to Theorem 1, we impose more restrictive assumptions.

A3. ξ1 has moments of any order.

A4. For j = 0, . . . , p, the coefficient a j is a positive function.

Theorem 2. Assume that the assumptions A1, A3 and A4 hold and bT
1
2−τ → ∞, b2

√
T → 0 for some

τ ∈ (0, 1/4). Then we have √
T

(
β̂∗ − β

)
→T→∞ Nn

(
0,

(
Eξ4

0 − 1
)
Σ−1

)
,

The proof of Theorem 2 is similar to that of Theorem 1 but involves more tedious arguments. A detailed
proof of Theorem 2 is given in the supplementary material.

3.2 Estimation of the nonparametric component

Now let us investigate the asymptotic properties for time-varying coefficients estimate α̂ defined by (2.7).
The estimator β̂ appearing in the expression (2.7) is constructed using the initial bandwidth parameter b
which satisfies the assumptions of Theorem 1.

Theorem 3. Let u ∈ [0, 1]. Assume that the assumptions of Theorem 1 hold. Then if b′ → 0, b′T → ∞ and
t = tT satisfies | tT − u| ≤ 1

T ,

√
Tb′ (α̂t − α(u)) +

√
Tb′E−1 (

W1(u)M1(u)M1(u)′
) (

At(u) − A#
t (u)

)
→ Nm (0,V(u)) ,

where

V(u) = Var
(
ξ2

1

)
·
∫

K(x)2dx

· E−1 (W1(u)M1(u)M1(u)′)E
(
W1(u)2σ1(u)4M1(u)M1(u)′

)
E−1 (W1(u)M1(u)M1(u)′).

At(u) = ŝ1,b′,t − ŝ2,b′,tβ − ŝ3,b′,tα(u),

A#
t (u) =

∑T
i=p+1 kt,i(b′)Wi(u)Mi(u)

(
Xi(u)2 − N′i (u)β − Mi(u)′α(u)

)
.
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This result is similar to that obtained in Fryzlewicz et al. (2008), Proposition 3. The part At(u) − A#
t (u)

can be interpreted as a term of deviation with respect to stationarity. As pointed out in Fryzlewicz et al.
(2008), this term satisfies At(u) − A#

t (u) = OP(b). One can easily check that the optimal asymptotic variance
in Theorem 3 corresponds to the choice W∗t = 1

σ2
t

for the weights. Thus, a plug-in approach is natural. We

set W̌∗t,i = 1
σ̂4

t,i+µT
, where

σ̂2
t,i = M′i α̂t + N′i β̂

and (µT ) is a sequence of positive real numbers which now plays the rule of the sequence (νT )T previously
used for the optimal estimator β̂∗. Once again, this choice is only technical and we impose here µT =

O
(
b′ + 1√

Tb′

)
. Then we define the following estimator of parameter αt.

α̂∗,t = š−1
3,b′,t

(
š1,b′,t − š2,b′,tβ̂

)
,

where for j = 1, 2, 3, š j,b′,t is obtained as ŝ j,b′,t but replacing Wi with W̌∗t,i.

Theorem 4. Assume that assumptions A1, A2(4) and A4 hold, b′T → ∞ and
√

Tb′ (b′)`0 → 0 for a given
integer `0. Then, if | tT − u| ≤ 1

T , we have

√
Tb′

(
α̂∗,t − α(u)

)
+
√

Tb′E−1
(

M1(u)M1(u)′

σ1(u)4

) (
Bt(u) − B#

t (u)
)
→ Nm (0,V∗(u)) ,

where

V∗(u) = Var
(
ξ2

1

)
·
∫

K(x)2dx · E−1
(

M1(u)M1(u)′

σ1(u)4

)
,

Bt(u) = š1,b′,t − š2,b′,tβ − š3,b′,tα(u),

B#
t (u) =

∑T
i=p+1 kt,i(b′)W̌∗i (u)Mi(u)

(
Xi(u)2 − N′i (u)β − Mi(u)′α(u)

)
.

Moreover, Bt(u) − B#
t (u) = OP(b′).

Notes

1. Compared to Theorem 3, Theorem 4 uses a more restrictive assumption b′. However for powers of
the sample size, i.e b′ = CT−` with constants C, ` > 0, the conditions are equivalent.

2. When all the coefficients of the volatility are time-varying, replacing M1 by
(
1, X0, . . . , X−p+1

)′
, we

recover the expression of the optimal asymptotic variance given in Fryzlewicz et al. (2008) for the (lo-
cal) weighted least-squares estimation. This asymptotic variance coincides with that obtained with the
local QML estimator studied in Dahlhaus and Subba Rao (2006). However, a crucial assumption in
Theorem 4 is the positivity of all the coefficients of the volatility. To avoid this restriction, Fryzlewicz

et al. (2008) consider the sequence of weights Ŵt =

d̂t +

p∑
j=1

X2
t− j


−2

where d̂t is a nonparametric

estimate of EX2
t . For the nonparametric estimation of the whole set of coefficients, they show that the

corresponding weighted least squares estimator is asymptotically normal, even if the ARCH coeffi-
cients are only nonnegative, but at the price of a small loss of efficiency. We claim that the weights
Ŵt can also be used in our context to obtain a result similar to Fryzlewicz et al. (2008), Proposition 4.
Details are omitted.
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3. As usual for this kind of nonparametric estimation, a better finite sample approximation of the distribu-
tion of the parameter estimators can often be obtained using bootstrap methods. With straightforward
modifications, it is possible to use the bootstrap method studied in Fryzlewicz et al. (2008) (see Sec-
tion 5 of that paper) to obtain pointwise confidence intervals for the components of α. Since this paper
is mainly devoted to testing and estimating some non-time varying coefficients, we will not consider
this bootstrap scheme.

4. Detailed proofs of Theorem 3 and Theorem 4 are given in the supplementary material.

3.3 Asymptotic semiparametric efficiency

For Gaussian inputs (i.e, ξ ∼ N(0, 1)), it is possible to show that the matrix 2Σ−1 given in Proposition 1 is
a lower bound in semiparametric estimation. We refer the reader to Bickel et al. (1998) for a general intro-
duction to semiparametric models and the problem of efficient estimation of a finite dimensional parameter
in such models. In our case case, the problem of semiparametric efficiency for estimating the parameter β
involves triangular arrays. This is why we will use an abstract result using the classical formalism presented
in van der Vaart and Wellner (1996) (see Chapter 3.11). Intuitively, one can see the matrix 2Σ−1 as the
smallest asymptotic variance obtained for estimating β in submodels for which the nuisance parameter αt

is projected onto a finite dimensional space of square integrable functions. Formally, the approach consists
in writing a LAN expansion of the likelihood ratio and then using a general convolution theorem. In the
sequel, we set for m, n ≥ 1, H = L2 ([0, 1])m ×Rn. Then H is an Hilbert space for the classical scalar product

< (g, h); (ḡ, h̄) >1=

m∑
i=1

∫ 1

0
gi(u)ḡi(u)du +

n∑
j=1

h jh̄ j.

However, in the sequel, the space H will be endowed with an equivalent scalar product defined by

< (g, h)|(ḡ, h̄) >H=
1
2

∫ 1

0

(
g(u)

h

)′
E(u)

(
g(u)

h

)
du,

where

E(u) =

E
(

M1(u)M1(u)′

σ1(u)4

)
E

(
M1(u)N1(u)′

σ1(u)4

)
E

(
N1(u)M1(u)′

σ1(u)4

)
E

(
N1(u)N1(u)′

σ1(u)4

) .
Now, we denote by L the set of Lipschitz functions f : [0, 1]→ R and we set H = Lm × Rn where m (resp.
n) is the dimension of vector Mt (resp. Nt). Then H is a linear subspace of H. The set (H, < ·, · >H) will
be referred to the tangent space. For Gaussian inputs, we first derive a LAN expansion for the (conditional)
likelihood ratio. We denote by PT,α,β the conditional distribution

(
Xp+1, . . . , XT

)
|X1 = x1, . . . , Xp = xp.

Proposition 2. Assume that ((α, β); (g, h)) ∈ H2 where the coordinates of α and β are positive. Then we
have

log
dPT,α+

g
√

T
,β+ h√

T

dPT,α,β

(
Xp+1, . . . , XT

)
= ∆T,g,h −

1
2
‖(g, h)‖2H + oPT,α,β(1),

where

∆T,g,h =
1

2
√

T

T∑
t=p+1

X2
t − σ

2
t

σ4
t

(
M′t g

( t
T

)
+ N′t h

)
.

Moreover,
∆T,g,h

D
→ Nn

(
0, ‖(g, h)‖2H

)
.
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From this LAN expansion, we derive a lower bound for the asymptotic variance of regular estimators of
β.

For (g, h) ∈ H, we set κT (g, h) = β + h√
T

. Then, the sequence of parameters {κT (g, h) : (g, h) ∈ H} is
regular: if κ̇ : H→ Rn is the projection operator defined by κ̇(g, h) = h, then

√
T (κT (g, h) − κT (0, 0)) = h.

Corollary 1. If the assumptions of Proposition 2 hold, then the adjoint operator κ̇∗ : Rn → H of κ̇ is given
by

κ̇∗v =

(
−q2(·)

In

) (
1
2

Σ

)−1

v, v ∈ Rn.

Consequently, the limit distribution of a regular estimator of β equals the distribution of a sum L1 + L2 of
independent random vectors of Rn and such that

L1 ∼ Nn
(
0, 2Σ−1

)
.

4 Statistical testing

4.1 Testing parameter constancy

For a real data set, it is necessary, before applying the methodology given in Section 2, to test if a coefficients
vector of the form β =

(
ar1 , . . . , arn

)
is time-varying or not in model (1.1). This is equivalent to test model

(2.1) versus model (1.1). When n = p and β =
(
a1, . . . , ap

)
, such a statistical test is interesting for deciding if

model (1.3) is a convenient restriction of the tv-ARCH model. This case is of particular interest for real data
applications. In Zhang and Wu (2012), a procedure is proposed for testing if some coefficients are constant
in a general time-varying regression model. The null hypothesis is H0: β(·) constant. The test statistic used
in Zhang and Wu (2012) is based on a L2 distance between an estimate under the alternative and an estimate
under the null hypothesis. In this part, we derive asymptotic properties of this test for tv-ARCH processes.
For simplicity, we will only consider some estimates without plug-in (i.e we fix a sequence of weights (Wt)t

of the form (2.3) and use the corresponding least-squares estimates). Let us first introduce some additional
notations.

For a function f : [−1, 1]→ R , we set ‖ f ‖2 =

√∫ 1
−1 f (u)2du and for x ∈ [−1, 1],

K∗(x) =

∫ 1−2|x|

−1
K(v)K (v + 2|x|) dv.

Setting for u ∈ [0, 1], ei(u) = 1
Tb K

(
uT−i
Tb

)
and for p + 1 ≤ t ≤ T , Xt =

(
M′t ,N

′
t
)′, the kernel estimate of the

full vector of ARCH coefficients a(u) = (α(u)′, β(u)′)′ is given by (see Fryzlewicz et al. (2008))

ã(u) = S −1
u

T∑
i=p+1

ei(u)WiX2
i Xi,

where S u =
∑T

i=p+1 ei(u)WiXiX
′
i . Then we set β̃(u) = Aã(u) where A is the matrix of size (p + 1)× n defined
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by Ax =


xm+1
...

xp+1

. Note also that β(u) = Aa(u). We also set κu = E (W1(u)X1(u)X1(u)′) and

O(u) = κ−1
u · E

(
W1(u)2

(
X1(u)2 − σ2

1(u)
)2
X1(u)X1(u)′

)
· κ−1

u

= Var
(
ξ2

1

)
κ−1

u · E
(
W1(u)2σ1(u)4X1(u)X1(u)′

)
· κ−1

u .

Let (Γ(u))u∈[0,1] be a family of positive definite matrices of size (p + 1) × (p + 1) such that u 7→ Γ(u) is a
Lipschitz function. Finally, we set for j = 1, 2,

$ j =

∫ 1

0
Tr

[
Γ(u)1/2AO(u)A′Γ(u)1/2

] j
du.

We define our test statistic ST (̃a, β) by

ST (̃a, β) =

∫ 1

0

(
β̃(u) − β

)′
Γ(u)

(
β̃(u) − β

)
du. (4.1)

The proof of the following theorem is given in the supplementary material.

Theorem 5. Assume that assumptions A1, A2(8) hold and β is non time-varying. Then if Tb2 → ∞ and
Tb3.5 → 0, we have

T
√

b

ST (̃a, β) −
‖K‖22$1

Tb

→ N (
0, 4‖K∗‖22$2

)
. (4.2)

Moreover (4.2) holds if ST (̃a, β) is replaced with ST
(̃
a, β̂

)
where β̂ is the estimate of Theorem 1.

Notes

1. As pointed out in Zhang and Wu (2012), if we are interested in prediction, the matrix Γ can be chosen
as the asymptotic variance of the kernel estimate β̂(·) (which has to be estimated in practice). In our
numerical studies, we will use the simple choice Γ(u) = In where In denotes the identity matrix of size
n.

2. Quantities $1 and $2 involved in the bias and asymptotic variance in (4.2) can be estimated consis-
tently, taking empirical counterpart. Then we obtain a pivotal statistic

ET = T
√

b
{
ST

(̃
a, β̂

)
−
‖K‖22$̂1

Tb

}
/
(
2‖K∗‖2

√
$̂2

)
and one can reject the null hypothesis for large val-

ues of this statistic. However, in practice, such nonparametric tests suffer from the slow convergence
in Theorem 5. As in Zhang and Wu (2012), one can use a Monte-Carlo type procedure which can
improve the finite-sample performance (a similar Monte Carlo procedure is also used in Patilea and
Raïssi (2014)). Note that the result of Theorem 5 is valid for i.i.d series with a standard Gaussian
marginal distribution. In particular, if E∗T denotes the pivotal statistics computed with an i.i.d sample
of standard Gaussian variables, we have limT→∞ E

∗
T = limT→∞ ET = N(0, 1) in distribution. Then

one can use the quantiles of the distribution of E∗T to compute the critical values for the test (instead
of the Gaussian quantiles). Let us give the details of the method proposed in Zhang and Wu (2012).
We assume that the bandwidth b has been already selected.
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• First simulate B samples of size T of i.i.d Gaussian random variables. For each sample, compute
the values of the estimators β̃(·) and β̂ as well as the realization of the pivotal statistics P∗T .

• Then, from these B realizations of the random variable E∗T , compute the empirical quantile
qMC(α) of order 1 − α.

• Reject H0 if ET is greater than qMC(1 − α).

3. In Zhang and Wu (2012), the power of the test under some local alternatives is studied (see Theorem
3.2 of this paper). A similar result can be derived here under the assumptions of Theorem 5. In

particular, for some local alternatives of the form β1(t/T ) = β+ zT f (t/T ), with 1/
√

T
√

b = o(zT ) and
f a Lipschitz function defined over [0, 1], the power of the test still converges to 1.

4.2 Testing if a constant parameter is equal to zero

In this part, we consider model (2.1) and our goal is to test whether the vector β is equal to zero. Two
approaches are discussed below.

1. One possibility is to use the asymptotic normality of the estimator β̂ given in Theorem 1. Under the
null hypothesis H0: β = 0, the asymptotic distribution of

√
T β̂ is that of a centered Gaussian vector

with covariance matrix V = Σ−1
1 Σ2Σ−1

1 . We have already discussed how to estimate the covariance
matrix V. If V̂ denotes such an estimate, the statistics T‖V̂−

1
2 β̂‖2 is asymptotically distributed as a

χ2 with n degrees of freedom (here ‖ · ‖ denotes the euclidean norm on Rn). As for the test given
in the previous subsection, one can use a Monte Carlo method instead of using the quantiles of the
asymptotic distribution (the convergence in distribution of the previous statistics is quite slow because
of the incorporation of nonparametric kernel estimates). If a bandwidth b is selected, one can simulate
B samples of Gaussian i.i.d random variables and compute the corresponding values of our statistics.
From these values, we can compute the empirical quantile qMC,α of order 1 − α and reject the null
hypothesis if T‖V̂−

1
2 β̂‖2 > qMC,α. This test has an asymptotic level α and a power converging to 1

under a fixed alternative. However such approach is not completely natural because the value β = 0 is
on the boundary of the parameter space, our test is similar to the bilateral test for testing the hypothesis
β = 0 in regression models and we ignore the sign of β. This will result in a loss of power and it is
more natural to consider a statistics based on the random vector

(√
T max

(
β̂i, 0

))
1≤i≤n

. The vector(
max(β̂i, 0)

)
1≤i≤n

will be called truncated least squares estimator. As discussed in Francq and Zakoïan
(2008) for stationary ARCH processes, truncated least squares estimators are natural for testing if
some lag coefficients are equal to zero. However, the limiting distribution of this truncated random
vector is that of (max (Zi, 0))1≤i≤n where Z = (Z1, . . . ,Zn) is a Gaussian vector, with dependent entries
in general. Then, except if Var (Z) is diagonal, it is not possible to get a pivotal statistics from truncated
least squares estimators. Then the Monte-Carlo method used for testing parameter constancy cannot
be applied. Note also that bootstrapping the model is not appropriated here because the bootstrap
is generally inconsistent for testing a parameter on the boundary (see for instance Andrews (2000)
for this problem). However, when β denotes the full vector of lag coefficients, it is possible to use
truncated least squares and the Monte Carlo method, provided Wt ≡ 1. This point is discussed below.

2. When β is the full vector of lag coefficients, the problem is to test model (1.2) versus model (1.3). For
testing if the lag coefficients are equal to zero in model (1.3), our test is based on the following result.
The following notation will be used. If p + 1 ≤ t ≤ T , we set d̂t =

∑T
i=p+1 kt,i(b)X2

i . Note that d̂t is an
estimator of EX2

t .

14



Proposition 3. Assume that A2(4) holds and that b ∈ [cT−h,CT−h] with 1
4 < h < 3

4 −
1

2(1+δ) , where
c,C are positive constants. Then under H0,

(
â1, . . . , âp

)′
= arg min

a1,...,ap

T∑
t=p+1

X2
t − d̂t −

p∑
j=1

a j
(
X2

t− j − d̂t− j
)

2

satisfies T
∑p

j=1 max
(
â j, 0

)2
→D σ2 ∑p

j=1 max
(
Z j, 0

)2
, where Z standard Gaussian vector and

σ2 =

∫ 1
0 Var

(
X0(u)2

)2
du(∫ 1

0 Var
(
X0(u)2) du

)2 .

Testing the second order dynamic. From this result, we reject H0 for large values of the statistics
ΨT = T

∑p
j=1 max

(
â j, 0

)2
/σ̂2 where σ̂2 is a consistent estimator of σ2. Typically one can choose

σ̂2 = T
T∑

t=1

â0(t/T )4/

 T∑
t=1

â0(t/T )2


2

with â0(t/T ) = d̂t,

which gives a consistent estimate under H0. A first solution is to reject H0 if ΨT is larger than the
quantile of order 1 − α of the distribution of the random variable

∑p
j=1 max

(
Z j, 0

)2
. But the statistics

ΨT is also asymptotically pivotal and its quantiles can be approximated by a Monte Carlo procedure
similar to that used for testing parameter constancy.

Notes

1. Note that the estimators of the lag coefficients corresponds to the estimators (2.6) with Wt ≡ 1. The
optimal rate of convergence h = 1

3 for kernel estimation of Lipschitz functionals can be used if δ > 1
5

in assumption A2(4). A proof of Proposition 3 is given in the supplementary material.

2. In the stationary case, two benchmark tests are usually used for testing the second order dynamic:
the Lagrange multiplier test of Engle (1982) and the portmanteau test of McLeod and Li (1983).
Patilea and Raïssi (2014) have recently extended these two tests for model (1.3), taking in account of
nonstationarity. Here we provide an alternative test based on a direct estimation of the lag coefficients.
A comparison of the different approaches is beyond the scope of this paper. Let us observe that in the
stationary case, the constant σ2 in Proposition 3 is equal to 1 whereas in the nonstationary case, this
constant σ2 is a correction factor which can be written

σ2 =

∫ 1

0
a0(u)4du/

(∫ 1

0
a0(u)2du

)2

> 1.

The correction factor σ2 also appears in the asymptotic results of Patilea and Raïssi (2014) (see the ra-
tio ω2

4/ω8 appearing in the two statistics used in that paper). Ignoring this factor leads to an oversized
test and the null hypothesis will be often rejected when the data are independent but not identically
distributed. Moreover, let us notice that our moment condition for the noise distribution is less restric-
tive for applying the test (a moment greater than 8 is assumed in Patilea and Raïssi (2014)).
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3. One can study the power of our test under local alternatives of type
√

T (a1, . . . , ap)′ → s where s is a
vector of nonnegative real numbers. One can show that if Eξ8(1+δ)

0 < ∞ and the bandwidth b satisfies
Tb2 → ∞ and Tb4 → 0, then

P

T p∑
j=1

max
(
â j, 0

)2
/σ̂2 > q1−α

→ P
 p∑

j=1

max
( s j

σ
+ Z j, 0

)2
> q1−α

 ,
where q1−α is the quantile of order 1 − α of the distribution of

∑p
j=1 max(Z j, 0)2. Details are omitted.

5 Real data applications

Before real data applications, let us provide some recommendations on the choice of tuning parameters.

5.1 Choice of tuning parameters

The practical implementation of our estimation and testing procedures requires the choice of some weights
Wt, some bandwidth parameters as well as the number of lags p in the model. In this subsection, we discuss
the practical choices of these parameters. In all our studies, the kernel W will be the Epanechnikov kernel.
For simplicity, only one bandwidth parameter will be selected for the semiparametric models (this means
that we set b′ = b in (2.7)). We use a cross-validation method as specified below. The selected bandwidth
will be used for the tests. For the tests, the Monte-Carlo procedure will be always applied with B = 2000
samples of i.i.d standard Gaussian random variables.

• In practice, a sequence of weights (Wt)t has to be chosen for applying our method. One possibility is to

use the weights Wt =

1 +

p∑
j=1

X2
t− j


−2

suggested in Horváth and Liese (2004). In our implementation,

we use the weights Wt =
(
v̂ +

∑p
j=1 X2

t− j

)−2
where v̂ = 1

T
∑T

t=1 X2
t is an estimate of the average of the

variance v =
∫ 1

0 E
(
X0(u)2

)
du. There are several advantages in using these weights. First, the lag

estimates obtained in model 1.3 do not depend on the scale of the returns, a property always satisfied
for the true lag coefficients (if Wt denotes the price at time t, Xt = log(Pt)−log(Pt−1) or 100×Xt are two
different scales used in practice). Moreover, for stationary Arch processes, this choice is equivalent
to the weights used in Fryzlewicz et al. (2008). We also noticed better finite sample performances
for our tests and inference procedures with this choice. However, the introduction of the random
quantity v̂ is not taken in account in our theoretical results. But, inspection of our proofs shows
that the conclusions of the theorems remain unchanged if v̂ − v = oP

(
T−1/4

)
. The latter condition

is satisfied if E|Xt|
h < ∞ for h > 8

3 (this can be justified using the moment inequality given in
Fryzlewicz et al. (2008), see Lemma A2). A sufficient condition for the finiteness of this moment is
E1/h

(
|ξ0|

h
)

supu∈[0,1]
∑p

j=1 a j(u) < 1 which is more restrictive than the initial condition given in A3.
Despite this slight restriction, we only consider the aforementioned sequence of weights in the sequel.

• For model (1.1), we use the cross-validation method considered in Fryzlewicz et al. (2008). The
bandwidth parameter is selected by minimizing the function

b 7→
T∑

t=p+1

Wt
(
X2

t − X
′
t â

(−t)
t (b)

)2
,
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where â−(t)
t (b) =


T∑

k=p+1
k,t,...,t+p

K
(
t − k
Tb

)
WkX

2
kX
′
k


−1

T∑
k=p+1

k,t,...,t+p

K
(
t − k
Tb

)
WkX2

kXk.

• For model (1.3), we choose the bandwidth b by minimizing

(β, b) 7→
T∑

t=p+1

Wt
(
X2

t − q̂(−t)
1,b,t −

(
Nt − q̂(−t)

2,b,t

)′
β
)2
.

Here for n = 1, 2, q̂(−t)
n,b,t is the version of q̂n,b,t (see (2.5)) defined as â−(t)

t (b), Nt =
(
X2

t−1, . . . , X
2
t−p

)′
and β = (a1, . . . , ap)′. This type of cross-validation is a weighted version of the method proposed by
Hart (1994) for AR models with a time-varying mean. Note that minimizing the latter function with
respect to β, b being fixed, leads to an estimate close to the estimate β̂ defined in (2.6).

• Finally, we discuss the selection of the number of lags p in model 1.1. An information criterion has
been studied recently by Zhang and Wu (2012) for time-varying regression models. It is possible to
adapt the approach used by these authors to our setting. To this end, we define for p = 0, 1, . . . , q,

C(p) = log

 T∑
t=p+1

W(q)
t

(
X2

t − X
′
i â

(p)(t/T )
)2

 + ζT (p + 1),

where Xt =
(
1, X2

t−1, . . . , X
2
t−p

)′
, W(q)

t =
(
v̂ +

∑q
j=1 X2

t− j

)−2
, â(p) are the coefficients estimates obtained

for the tv-ARCH with p lags but computed with the weights W(q) and ζT is a vanishing sequence of
positive numbers. The goal of the selection procedure is to minimize p 7→ C(p) in the spirit of AIC
or BIC criterion used for regression models. The bandwidth b is selected by cross validation for the
tv-ARCH model with q lags. Of course, condition on the decrease of ζT has to be imposed to get
consistency (i.e P

(
arg min0≤p≤q C(p) = p0

)
→ 1 if p0 ≤ q is the true number of lags). Inspecting the

proofs of Lemma A6 and Theorem 3.3 in Zhang and Wu (2012), we find that condition T 2/3ζT → ∞

guarantees consistency (using the arguments of the proof of Theorem 5, one can show that the quantity
φT (φT + ρT ) in Lemma A6 of Zhang and Wu (2012) can be replaced with T−2/3 in our context). For
real data applications we choose ζT = log(log(T ))/(Tb) where b is selected using cross-validation.
Our intensive simulation study reported in the supplementary material shows that this choice gives
reasonable performances. This choice can be also justified using the argument given in Zhang and
Wu (2015): (p + 1)/b can be seen as the effective number of parameters in kernel smoothing. Hence
our choice has a similarity with the Hannan-Quinn information, except that we gave up the constant 2c
with c > 1 used in Hannan and Quinn (1979). We found that adding such a factor underestimates the
order in our case. A precise justification of our choice using a version of the law of iterated logarithm
is not the goal of this paper. However, one can notice that applying cross-validation on an interval of
type

[
cT−1/3,CT−1/3

]
is compatible with our consistency condition. In the applications, the maximal

number of lags is set to q = 10.

Using the approach described above, we conducted an extensive simulation study. Some numerical ex-
periments are reported in the supplementary material and show the good behavior of our method for various
simulation setups. This simulation study shows that our estimators and tests have reasonable performances
for the sample sizes considered in the sequel. Here we only report the results obtained with real data.
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For real data applications, the bandwidth will be always chosen using CV over a grid of the form [c,C]×
T−1/3 where c and C are two positive constants (we recall that T−1/3 is the optimal rate of convergence for
the bandwidth in the nonparametric estimation of a Lipschitzian regression function). We will also use some
acronyms for our models. Model tv(p) denotes the tvARCH model with p lags (the case p = 0 refers to
model (1.2)) while model sptv(p) denotes model (1.3) with p ≥ 1. In the sequel, we consider two currency
exchange rates and one stock market index. The log returns Xt = log (Pt) − log (Pt−1) of the initial series
(Pt)t will be modelized with ARCH processes.

5.2 Exchange rate USD/Euro

In this subsection, we study the exchange rate series between the US Dollar and the Euro. We consider the
period from January 03, 2000 to February 13, 2015. The sample size is T = 3799. As usual for this type of
series, the autocorrelograms suggest correlation for the squares of the transformed series.
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Figure 1: Autocorrelogram and autocorrelogram of the squares for the logged and differenced daily ex-
change rates USD/Euro

For this data set, the information criterion selects p = 0. To confirm this choice, we apply our procedure
with p = 2. The results for testing the hypothesis of non time-varying coefficients are reported in Table 1.
The intercept function seems not constant in contrast to the lag coefficients for which it is not possible to
reject the null hypothesis. Fitting a sptv(2) process gives small negative values for the lag coefficients and
it is of course not necessary to test if they are equal to zero. This conclusion suggests an absence of second
order dynamic for this series. We refer the reader to Granger and Stǎricǎ (2005) and Herzel et al. (2006) for
other analysis suggesting a similar behavior for some financial time series.
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Non t-v a0 Non t-v a1 Non t-v a2 Non t-v (a1, a2) b̂
0.0005 0.138 0.1645 0.6415 0.028

Table 1: The p−values for testing the hypothesis of non time-varying coefficients (the first line gives the null
hypothesis)

A plot of the series with the final estimate of the intercept function is given Figure 2.
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Figure 2: Logged and differenced daily exchange rates between USD and Euro and estimation of the uncon-
ditional variance

5.3 A second example: the exchange rates between the US Dollar and the Indian Rupee

In this subsection, we analyze the exchange rates series between the US Dollar and the Indian Rupee over
the period starting from December 19, 2005 to February 18, 2015. The sample size is T = 2303. The
information criterion selects p = 1 lag for this series. From the p−values reported in Table 2, the hypothesis
of a constant intercept function is clearly rejected but it is not possible to reject the assumption of a non
time-varying first lag coefficient. Fitting a sp(1) process gives a small but significant lag estimates (the p−
value for testing the second order dynamic is less than 10−4). In contrast, fitting a stationary ARCH process
with one lag (one can simply use b = 1 and our procedure) leads to â1 = 0.3041 (s.e 0.0717) and several
significant lag estimates are found for larger values of p .

Non t-v a0 Non t-v a1 b̂tv â1 b̂sptv

< 10−4 0.4215 0.035 0.1527 (s.e 0.0688) 0.028

Table 2: Test and estimation for the USD/Rupee series (p−values for the test, the selected bandwidths for
fitting a tv(1)/sptv(1) process and estimation of the first lag coefficients)
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Figure 3: Logged and differenced daily exchange rates between the US Dollar and the Indian Rupee and
estimation of the intercept function

5.4 A classical stock market index: the FTSE

Finally, we consider the closing values of the FTSE index from January 04, 2005 to March 04, 2015, taking
as usual the logged and differenced daily returns. Our information criterion selects p = 5 lags. Testing
constancy of the intercept function gives a p−value of 3 × 10−3 and the p−value for testing constant lag
coefficients is 0.066. Hence, the assumption of constant lag coefficients is rejected at level α = 10% (testing
constancy of the third and fourth coefficients gives the p-values 0.084 and 0.067 respectively, the other
p−values exceed 10%) and considering a tv-ARCH process for this data set could be interesting. We also
fit a sptv(5)−process. The estimated lag parameters and their standard errors are reported in Table 3. The
p−value for testing the absence of second order dynamic is close to zero.

â1 â2 â3

0.0547 (s.e 0.0321) 0.1155 (s.e 0.0320) 0.1204 (s.e 0.0311)
â4 â5 b̂S P

0.0942 (s.e 0.0367) 0.1201 (s.e 0.0324) 0.063

Table 3: Estimated values of the lag coefficients and selected bandwidth for the FTSE

Here selecting the number of lags is important because fitting a sptv(2)−process for instance does not
give significant lag estimates and the selected bandwidth for p = 2 is very small. In Fryzlewicz et al. (2008),
it is suggested that stationnary GARCH models give better forecasts for stock market indices than tvARCH
processes and that this result could be explained by a more stationarity behavior of these series with respect
to currency exchange rates. This observation is compatible with our analyze of the FTSE index on this period
of time which suggests that adding non linearity has a tendency to take away non stationarity, with larger
selected bandwidths. However, Figure 4 shows that incorporating a time-varying unconditional variance
significantly reduces the values of ARCH parameters. In Figure 4, two extreme cases are observed. When
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b → 0, the sum of lag coefficients becomes arbitrary small whereas the value b = 1 (which corresponds
to the fitting of a stationnary ARCH process) leads to larger lag estimates. Moreover, in fitting a sptv(5)
process, the ratio

√
â0(u)/σ̂t has an average of 0.75 (s.e 0.14) which means that the contribution of the

time-varying intercept has a strong contribution to volatility.
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Figure 4: Sum of the first five lag coefficients with respect to the value of the bandwidth b (red dashed lines
correspond to the bandwidth selected using our method)
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Supplementary material

A Auxiliary results for the proofs

In this subsection, we consider a general time-varying ARCH process (Xt)1≤t≤T defined by

Xt = ξt

√√√
a0

( t
T

)
+

p∑
j=1

a j

( t
T

)
X2

t− j, p + 1 ≤ t ≤ T.

The different coefficients a j can be time-varying or not and we assume that assumption A1 is satisfied. Let
us introduce additional notations.

• We will always denote by ‖ · ‖ the euclidean norm on Rg for an arbitrary positive integer g. The
corresponding operator norm onMg, the set of matrices of size g × g and with real coefficients, will
be also denoted by ‖ · ‖.

• If X is an integrable random variable taking values inMg, we set X̄ = X − E(X).

• For a sequence b = bT ∈ (0, 1) of bandwidths, we recall the notation

kt,i(b) =

1
Tb K

(
t−i
Tb

)
1

Tb
∑T

j=p+1 K
(

t− j
Tb

) , p + 1 ≤ i, t ≤ T.

Note that max
p+1≤i,t≤T

kt,i(b) = O
(
(Tb)−1

)
. This bound will be extensively used in the sequel.

• For 1 ≤ t ≤ T , we set Ft = σ (ξs : s ≤ t) .

• Finally, we set Zt = ξ2
t − 1 for t ∈ N. Then Zt is centered.

• Important notations: for simplicity of notations, the quantities ŝ j,b,t appearing in the statements of
Theorems 1 and 3 will be simply denoted by S j,b,t for j = 1, 2, 3.

We first give a lemma about the regularity of tv-ARCH processes. The following result is crucial for
deriving asymptotic properties of our estimators and it is a direct consequence of Theorem 1 in Dahlhaus
and Subba Rao (2006) (see also Subba Rao (2006), Theorem 2.1 and the discussion in Section 5.2).

Lemma 1. 1. There exists a constant C > 0 such that for all (u, v,T ) ∈ [0, 1]2 × N∗,

E|X1(u)2 − X2
1(v)| ≤ C|u − v|, max

1≤t≤T
E|X2

t − X2
t

( t
T

)
| ≤

C
T
.

From this lemma, we get supT≥p+1 maxp+1≤t≤T EX2
t < +∞.

In the sequel, we will use the following terminology.

Definition 1. We will say that a sequence of functions fT : {1, . . . ,T } × Rp
+ → R, T ≥ p + 1, is in the class

L if there exists two positive real numbers M and L, not depending on T , such that

fT is bounded by M, max
1≤t≤T

| fT (t, x) − fT (t, y)| ≤ L‖x − y‖.

23



Now, we will consider two particular classes of processes.

Definition 2. 1. A process (Yt)p+1≤t≤T is said to be of type I if

Yt = fT
(
t, X2

t−1, . . . , X
2
t−p

)
, p + 1 ≤ t ≤ T,

where ( fT )T≥p+1 is in the class L.

2. A process (Yt)p+1≤t≤T is said to be of type II if

Yt = fT
(
t, X2

t−1, . . . , X
2
t−p

)
+ ZtgT

(
t, X2

t−1, . . . , X
2
t−p

)
, p + 1 ≤ t ≤ T,

where ( fT )T≥p+1 and (gT )T≥p+1 are both in the class L and gT , 0.

3. A process S̄ defined by

S̄ t =

T∑
i=p+1

kt,i(b)Ȳi, p + 1 ≤ t ≤ T,

with Y of type I or II will be called a smoothing .

Notes

1. An important example of processes of type II is Yt = WtX2
t− jX

2
t , for j ∈ ~1, p�. Here Wt is given by

equation (2.3) in the paper. This is due to the decomposition Yt = Wtσ
2
t X2

t− j + ZtWtσ
2
t X2

t− j and to the
particular form of the weights Wt and of σ2

t .

2. Some smoothings appear in the expression of q̂ j,b,t for j = 1, 2. Our method for proving Theorem 1
is to make an asymptotic expansion of the estimator β̂ and to show that the effect of the smoothings
incorporated in β̂ is negligible by computing some moments. The terminology type I or type II is just
used for identifying the number of smoothings which impose a moment restriction.

A.1 Covariance inequalities

Here, we assume that the assumptions of Theorem 1 are fulfilled. Sometimes, assumption A2(h) can be
used for a general value of the integer h, this will be precised in the statements of our Lemma/Propositions.

Lemma 2. Let s and t be two natural integers such that T ≥ t ≥ s+1 ≥ p+1. Now let
(
Υs,Υs−1, . . . ,Υs−p+1

)
be a random vector independent from the sequence (ξt)1≤t≤T and with the same distribution as(
Xs, Xs−1, . . . , Xs−p+1

)
. For s + 1 ≤ k ≤ t, we define recursively

Υk = ξk

√√√
a0

( t
T

)
+

p∑
j=1

a j

( t
T

)
Υ2

k− j.

Then
E|X2

t − Υ2
t | ≤ 2dc

t−s−1
p ,

where d = supT≥p+1 max1≤t≤T EX2
t and c is defined in assumption A1.
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Proof of Lemma 2

• Assume first that s + 1 ≤ t ≤ s + p. Then

E|X2
t − Υ2

t | =

p∑
j=1

a j

( t
T

)
E|X2

t− j − Υ2
t− j|

≤ c max
1≤ j≤p

E|X2
t− j − Υ2

t− j|

≤ 2dc.

Since t−s−1
p ≤ 1, the result follows in this case.

• Suppose the inequality true for any t ∈ ~s + p,N�, where N ∈ ~s + p,T − 1�. Then

E|X2
N+1 − Υ2

N+1| ≤ c × max
1≤ j≤p

E|X2
N+1− j − Υ2

N+1− j|

≤ 2d max
1≤ j≤p

c1+
N+1− j−s−1

p

≤ 2dc
N−s

p .

Then the result of the lemma follows from a finite induction.�

Lemma 3. Let h, s, t be three integers such that p ≤ s ≤ t ≤ T and h ≥ 1. Assume that Eξ2h(1+δ)
0 < ∞ with

0 < δ < 1. Let Us be an integrable random variable Fs−measurable and G : Rp+k+1 → R a bounded and
Lipschitzian function. We set

Ut = Zt+`1 · · · Zt+`oG
(
X2

t−p, X
2
t−p+1, . . . , X

2
t+k

)
,

with 0 ≤ `1, . . . , `o ≤ k and o ≤ h. Assume that E|UsZt+`1 · · · Zt+`o |
1+δ < ∞. Then, we have

|Cov (Us,Ut) | ≤ (C1 ∨C2) c
κ(t−s)

p ,

where, setting κ = δ
1+δ ,

C1 = M(G)c−κ
(
E|UsZt+`1 · · · Zt+`o | + E|Us| · E|Zt+`1 · · · Zt+`o |

)
.

and

C2 =
dκc−κ

p+1
p

1 − c
κ
p

L(G)κM(G)1−κE
1

1+δ |UsZt+`1 · · · Zt+`o |
1+δ,

where d is given in Lemma 2 and M(G) (resp. L(G)) denotes the supremum (resp. the Lipschitz constant) of
the function G.
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Proof of Lemma 3.

• Assume first that t − p ≤ s. Then, it is easy to get the bounds

|Cov (Us,Ut) | ≤ M(G)
(
E|UsZt+`1 · · · Zt+`o | + E|Us| · E|Zt+`1 · · · Zt+`o |

)
≤ C1cκ

t−s
p .

• Now, assume that t ≥ s + 1 + p. We have the equality Cov (Us,Ut) = E
(
Us

(
Ut − U′t

))
, where

U′t = Zt+`1 · · · Zt+`oG
(
Υ2

t−p, . . . ,Υ
2
t+k

)
is a random variable independent from Fs. Here Υ denotes the process introduced in Lemma 2. Using
Lemma 2, the following bounds are valid.

|Cov (Us,Ut) |

≤ E|UsZt+`1 · · · Zt+`o · |G
(
X2

t−p, . . . , X
2
t+k

)
−G

(
Υ2

t−p, . . . ,Υ
2
t+k

)
|

≤ (2M(G))1−κ E|UsZt+`1 · · · Zt+`o | · |G
(
X2

t−p, . . . , X
2
t+k

)
−G

(
Υ2

t−p, . . . ,Υ
2
t+k

)
|κ

≤ L(G)κ (2M(G))1−κ
k∑

i=−p

E|UsZt+`1 · · · Zt+`o | · |X
2
t+i − Υ2

t+i|
κ

≤ L(G)κ (2M(G))1−κ
k∑

i=−p

E
1

1+δ |UsZt+`1 · · · Zt+`o |
1+δ × Eκ|X2

t+i − Υ2
t+i|

≤ (2d)κL(G)κ (2M(G))1−κ E
1

1+δ |UsZt+`1 · · · Zt+`o |
1+δ ×

k∑
i=−p

cκ
t+i−s−1

p

≤
dκc−κ

p+1
p

1 − c
κ
p

L(G)κM(G)1−κE
1

1+δ |UsZt+`1 · · · Zt+`o |
1+δcκ

t−s
p .

Then the result announced in Proposition 3 is a direct consequence of the two previous points.�

The following corollary is a direct consequence of Lemma 3.

Corollary 2. Let h ≥ 1 be an integer. Assume that Eξ2h(1+δ)
0 < ∞ with 0 < δ < 1. Let s, t, q, o four

non-negative integers such that p ≤ s ≤ t and q + o ≤ h. Let Us and Ut two random variables defined by

Us = Zh1 · · · Zhq H
(
X2

1 , . . . , X
2
s

)
, Ut = Zt+`1 · · · Zt+`oG

(
X2

t−p, . . . , X
2
t+k

)
,

where H and G are two elements of L and 1 ≤ h1 ≤ · · · ≤ hq ≤ s and 0 ≤ `1 ≤ · · · ≤ `o ≤ k. Then, we have
the bound

Cov(Us,Ut) ≤ (C1 ∨C2) cκ
t−s
p ,

where C1 = M(G)M(H)c−κ
(
E|Z1|

q+o + E|Z1|
o · E|Z1|

q) and

C2 =
dκc−κ

p+1
p

1 − c
κ
p

L(G)κM(G)1−κM(H)E
1

1+δ

(
|Z1|

(q+o)(1+δ)
)
.
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A.2 Moment bounds

The two next results are crucial for proving the asymptotic normality of our estimators. In particular, Propo-
sition 4 gives conditions under which some partial sums involving smoothings are convergent to zero with a
faster rate than

√
T .

Lemma 4. Assume that Eξ2h(1+δ)
0 < ∞ for a positive integer h. Let Y (1), . . . ,Y (q) be q ≥ 1 process of type I

or II with at most h processes of type II. Then for a family
{
zT,i : p + 1 ≤ i ≤ T,T ≥ p + 1

}
of deterministic

positive weights, we have ∑
p+1≤i1,...,iq≤T

zT,i1 · · · zT,iq |E
(
Ȳ (1)

i1
· · · Ȳ (q)

iq

)
| = O

(
(φT sT )

q
2
)
,

where sT =
∑T

i=p+1 zT,i and φT = maxp+1≤i≤T zT,i.

Proof of Lemma 4 We set β = c
δ

p(1+δ) . The result is clear for q = 1. Assume that q ≥ 2. First, we observe
that from Corollary 2, we have for p + 1 ≤ t1 ≤ · · · ≤ tq ≤ T and 1 ≤ j ≤ q − 1,

|Cov
(
Ȳ (1)

t1 · · · Ȳ
( j)
t j
, Ȳ ( j+1)

t j+1
· · · Ȳ (q)

tq

)
| ≤ Cβt j+1−t j , (A.1)

where C > 0 does not depend on T and on t1, . . . , tq. Inequality (A.1) follows from the fact that the
covariance given in (A.1) can be decomposed as a sum of covariances of the form Cov

(
Ut j ,Ut j+1

)
given in

Corollary 2 (replacing s and t with t j and t j+1 respectively). Inequality (A.1) is crucial for the sequel.
We set for 1 ≤ j ≤ q,

A( j)
T

(
Ȳ (1), . . . , Ȳ ( j)

)
=

∑
p+1≤i1≤···≤i j≤T

zT,i1 · · · zT,i j |E
(
Ȳ (1)

i1
· · · Ȳ ( j)

i j

)
|.

We use a classical method for bounding sums of cross moments using bounds on covariances (see Dedecker
et al. (2007) p. 78). For a q−uplet i = (i1, . . . , iq) ∈ ~p + 1,T� such that i1 ≤ · · · ≤ iq, we define

s(i) = min
{

j ≤ q : i j+1 − i j = max
1≤`≤q−1

(i`+1 − i`)
}
.

Then, using the bound (A.1), we have

A(q)
T

(
Ȳ (1), . . . , Ȳ (q)

)
≤

q−1∑
j=1

A( j)
T

(
Ȳ (1), . . . , Ȳ ( j)

)
· A(q− j)

T

(
Ȳ ( j+1), . . . , Ȳ (q)

)
+ C

q−1∑
j=1

T−1∑
r=0

βr
∑

i:s(i)= j,i j+1=i j+r

zT,i1 · · · zT,iq .

Since, ∑
i:s(i)= j,i j+1=i j+r

zT,i1 · · · zT,iq ≤ sT (φT )q−1 (r + 1)q,
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we conclude that

A(q)
T

(
Ȳ (1), . . . , Ȳ (q)

)
≤

q−1∑
j=1

A( j)
T

(
Ȳ (1), . . . , Ȳ ( j)

)
· A(q− j)

T

(
Ȳ ( j+1), . . . , Ȳ (q)

)
+ O

(
sT (φT )q−1

)
.

Since φT ≤ sT , we have sT (φT )q−1 ≤ (sTφT )
q
2 . Then using an induction on q, it easy to prove that

A(q)
T

(
Ȳ (1), . . . , Ȳ (q)

)
= O

(
(sTφT )

q
2
)
.

This proves Lemma 2.�

Proposition 4. Assume that Eξ4h(1+δ)
0 < ∞ for a positive integer h and that b

√
T → ∞. Let Y (1), . . . ,Y (q)

be q ≥ 2 processes of type I or II with at most h processes of type II. We denote by S̄ (1), . . . , S̄ (q) the
corresponding smoothings.

1. If
{
µt,T : p + 1 ≤ t ≤ T,T ≥ p + 1

}
denotes a family of real numbers such that

sup
T≥p+1

max
p+1≤t≤T

|µt,T | < ∞,

we have, using the notations of point 2,

1
√

T

T∑
t=p+1

µt,T S̄ (1)
t · · · S̄

(q)
t = oP(1).

2. We have also 1√
T

∑T
t=p+1 Ȳ (1)

t S̄ (2)
t · · · S̄

(q)
t = oP(1).

3. If Y is a process of type I (resp. II), we have for all positive integer h′ (resp. h = h′), max1≤t≤T ES̄ 2h′
t =

O
(
(Tb)−h′

)
.

4. Assume that Y (1) is a process of type I. Then 1
T

∑T
t=p+1 Y

(1)
t converges to 0 a.s.

Proof of Proposition 4

1. Assume that supt,T |µt,T | ≤ C. Taking the second order moment, we get

E|
1
√

T

T∑
t=p+1

µt,T S̄ (1)
t · · · S̄

(q)
t |

2

≤
C2

T

T∑
s,t=p+1

T∑
i1,M1,...,iq, jq=p+1

ks,i1kt,M1 · · · ks,iqkt, jq ·

|E
(
Ȳ (1)

i1
Ȳ (1)

M1
· · · Ȳ (q)

iq
Ȳ (q)

jq

)
|.

Using Lemma 2 (replacing h with 2h) with sT = 1 and φT = O
(

1
Tb

)
, the last bound is O

(
1

T q−1bq

)
. The

result follows using the bandwidth assumptions.
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2. The second order moment writes

1
T

T∑
s,t=p+1

T∑
i1,M1,...,iq−1, jq−1=1

ks,i1kt, j1 · · · ks,iq−1kt, jq−1 ·

×E
(
Ȳ (1)

s Ȳ (1)
t Ȳ (2)

i1
Ȳ (2)

j1
· · · Ȳ (q)

iq−1
Ȳ (q)

jq−1

)
.

Using the bound maxp+1≤t,i≤T kt,i = O
(

1
Tb

)
and applying Lemma 2 with zT,i = 1, it is easy to show

that this second order moment is O
(

1
T q−1b2(q−1)

)
. This leads to the result.�

3. This is a consequence of Lemma 2, using the inequality

E
(
S̄ 2h′

t

)
≤

∑
p+1≤i1,...i2h′≤T

kt,i1 · · · kt,i2h′

∣∣∣∣E (
Ȳi1 · · · Ȳi2h′

)∣∣∣∣ .
4. We have for ε > 0,

P

 1
T
|

T∑
t=p+1

Ȳ (1)
t | > ε


≤

1
ε4T 4E|

T∑
t=p+1

Ȳ (1)
t |

4

≤
1

ε4T 4

∑
p+1≤i1,...i4≤T

|E
(
Ȳ (1)

i1
· · · Ȳ (1)

i4

)
|

Using Lemma 2, the last bound is O
(

1
T 2

)
. Then the result follows from the Borel-Cantelli Lemma. �

A.3 Control of deterministic quantities using local stationarity

Lemma 5. 1. For u ∈ [0, 1], we set s2(u) = E (W1(u)M1(u)N1(u)′) and s3(u) = E (W1(u)M1(u)M1(u)′).
Then we have

max
p+1≤t≤T

{
‖s3,t − s3

( t
T

)
‖ + ‖s2,t − s2

( t
T

)
‖

}
= O

(
1
T

)
, (A.2)

inf
u∈[0,1]

det (s3(u)) > 0, (A.3)

sup
u∈[0,1]

‖q2(u)‖ < ∞, (A.4)

max
p+1≤t≤T

‖q2,t − q2

( t
T

)
‖ = O

(
1
T

)
. (A.5)
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2. We have
sup

T≥p+1
max

p+1≤t≤T

{
‖E−1(S 3,t)‖ + ‖E

(
S 1,t

)
‖ + ‖E

(
S 2,t

)
‖
}
< ∞.

3. Setting η j,t = E−1(S 3,t)E
(
S j,t

)
− q j,t for j = 1, 2, we have

max
p+1≤t≤T

{
‖η1,t‖ + ‖η2,t‖

}
= O(b).

4. We have

max
p+1≤t≤T

{
‖S 3,t‖ + ‖S −1

3,t ‖
}

= OP(1). (A.6)

Proof of Lemma 5

1. We prove the four assertions successively.

• Since Wt Mt M′t = f
(
t/T, X2

t−1, . . . , X
2
t−p

)
where f : [0, 1] × Rp

+ →Mm,m satisfies

‖ f (u, x1, . . . , xp) − f (u, y1, . . . , yp)‖ ≤ C
p∑

i=1

|xi − yi|

for some positive constant C, Lemma 1 given in the paper yields to maxp+1≤t≤T ‖s3,t − s3
(

t
T

)
‖ =

O(1/T ). The conclusion for s2,t follows in the same way. This shows (A.2).

• Next, we show (A.3). Let λ(u) be the smallest eigenvalue of E (W1(u)M1(u)M1(u)′). From
Lemma 1, the application u 7→ E (W1(u)M1(u)M1(u)′) is Lipschitz continuous. Moreover, it is
easily shown that for all u ∈ [0, 1], the matrix E (W1(u)M1(u)M1(u)′) is positive definite. This
entails that the application u 7→ λ(u) is continuous and positive. This implies (A.3).

• Since supu∈[0,1] ‖W1(u)M1(u)N1(u)′‖ is bounded, we deduce from (A.3) that supu∈[0,1] ‖q2(u)‖ <
∞.

• The assertion (A.5) easily follows from (A.2), (A.3) and (A.4).

2. Since
C = sup

ω,T,i
Wi(ω)‖Mi(ω)‖ < ∞,

we have

‖E
(
S 1,t

)
‖ ≤

T∑
i=p+1

kt,i‖E
(
WiMiX2

i

)
‖ ≤ C sup

T≥p+1
max
1≤t≤T

E
(
X2

t

)
.

The same kind of inequality holds for ‖E
(
S 2,t

)
‖.

It remains to prove that

sup
T≥p+1

max
p+1≤t≤T

‖E−1(S 3,t)‖ < ∞. (A.7)

If x ∈ R j, with ‖x‖ = 1, we have using (A.2),

x′E(S 3,t)x ≥ inf
p+1≤t≤T

x′s3,t x ≥ inf
u∈[0,1]

x′s3(u)x −
C
T
,
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for a suitable constant C > 0. Then, using (A.3), there exists λ > 0 such that x′E(S 3,t)x ≥ λ − C
T .

We deduce that if T is large enough, the smallest eigenvalue of E(S 3,t) is bounded from below. This
means that there exists an integer T0 ≥ p + 1 such that

sup
T≥T0

max
p+1≤t≤T

‖E−1(S 3,t)‖ < ∞.

But since each of the matrices E(S 3,t) is easily shown to be positive definite for p + 1 ≤ t ≤ T and
T ≥ T0, (A.7) easily follows.

3. For a Lipschitzian function f defined over [0, 1], the assumptions made on the kernel K implies that

max
1≤t≤T

| f (t/T ) −
T∑

i=1

kt,i f (i/T )| = O(b).

We only prove that maxp+1≤t≤T ‖η1,t‖ = O(b), the proof for η2,t is similar. We use the decomposition

η1,t = s−1
3,t

(
s3,t − E(S 3,t)

)
E−1(S 3,t)s1,t + E−1(S 3,t)

(
E

(
S 1,t

)
− s1,t

)
. (A.8)

From the proof of the two first points of the present Lemma, it is easily seen that

sup
T≥p+1

max
p+1≤t≤T

{
‖E−1(S 3,t)‖ + ‖s1,t‖ + ‖s−1

3,t ‖
}
< ∞. (A.9)

Moreover
max

p+1≤t≤T
‖s3,t − E

[
W1(t/T )M1(t/T )M′1(t/T )

]
‖ = O(1/T ).

Since E
(
Wt MtX2

t

)
= E

(
Wt Mtσ

2
t

)
, the choice of the weights Wt entails also

max
p+1≤t≤T

‖s1,t − E
[
W1(t/T )M1(t/T )X2

1(t/T )
]
‖ = O(1/T ).

Now, since the two applications

u 7→ d(u) = E
(
W1(u)M1(u)X2

1(u)
)

u 7→ e(u) = E
(
W1(u)M1(u)M1(u)′

)
are Lipschitz continuous, we get

max
p+1≤t≤T

{
‖E

(
S 1,t

)
− s1,t‖ + ‖E(S 3,t) − s3,t‖

}
= O(b). (A.10)

Then, the result announced follows easily from (A.8), (A.9) and (A.10).

4. We use the decomposition S 3,t = S̄ 3,t + E(S 3,t). From the previous points, we have

max
p+1≤t≤T

{
‖E(S 3,t)‖ + ‖E−1(S 3,t)‖

}
= O(1).

Moreover for ε > 0, we have using point 3 of Proposition 3,

P

(
max

p+1≤t≤T
‖S̄ 3,t‖ > ε

)
≤

1
ε4

T∑
t=p+1

E‖S̄ 3,t‖
4

≤
C

ε4Tb2 .

Then we conclude that maxp+1≤t≤T ‖S̄ 3,t‖ = oP(1). Then (A.6) easily follows.�
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B Proof of Theorem 1

Setting

β̂ = D−1
T LT , LT =

T∑
t=p+1

WtÔtV̂t, DT =

T∑
t=p+1

WtÔtÔ′t ,

we have β̂ − β = D−1
T

∑T
t=p+1 WtÔt

(
V̂t − Ô′tβ

)
. Using the two relations V̂t = Vt − M′t

(
q̂1,t − q1,t

)
, Ôt =

Ot −
(
q̂2,t − q2,t

)′ Mt, we obtain

β̃ − β = D−1
T

T∑
t=p+1

Wt
(
Ot − (q̂2,t − q2,t)′Mt

)
·
(
(ξ2

t − 1)σ2
t − M′t (q̂1,t − q1,t) + M′t (q̂2,t − q2,t)β

)
.

We also set Ut = WtOt M′t . Observe that EUt = 0. This yields to the following decomposition.

β̂ − β = D−1
T

(
L1,Tβ − L2,Tβ − L3,T + L4,T + L5,T − L6,T

)
,

where

L1,T =

T∑
t=p+1

Ut
(
q̂2,t − q2,t

)
, L2,T =

T∑
t=p+1

Wt
(
q̂2,t − q2,t

)′ Mt M′t
(
q̂2,t − q2,t

)
,

L3,T =

T∑
t=p+1

Ut
(
q̂1,t − q1,t

)
, L4,T =

T∑
t=p+1

Wt
(
q̂2,t − q2,t

)′ Mt M′t
(
q̂1,t − q1,t

)
,

L5,T =

T∑
t=p+1

WtOtZtσ
2
t , L6,T =

T∑
t=p+1

Wt
(
q̂2,t − q2,t

)′ MtZtσ
2
t .

L5,T is the main term in the asymptotic expansion of the numerator LT . We will use the formula

B−1A− b−1a = b−1(A− a)− b−1(B− b)b−1(A− a)− b−1(B− b)b−1a + B−1(B− b)b−1(B− b)b−1A. (B.1)

Now for j = 1, 2, 3, we set S̄ j,t = S j,t − E
(
S j,t

)
. Using (B.1), we have for j = 1, 2,

q̂ j,t − q j,t = E−1 (
S 3,t

)
E

(
S j,t

)
− q j,t + S −1

3,t S̄ 3,tE
−1 (

S 3,t
)

S̄ 3,tE
−1 (

S 3,t
)

S j,t

+ E−1 (
S 3,t

)
S̄ j,t − E

−1 (
S 3,t

)
S̄ 3,tE

−1 (
S 3,t

)
S̄ j,t − E

−1 (
S 3,t

)
S̄ 3,tE

−1 (
S 3,t

)
E

(
S j,t

)
(B.2)

To prove Theorem 1, we will prove that

1
√

T
L5,T

D
→ Nn (0,Σ2) , (B.3)

1
√

T
L j,T = oP(1), j ∈ {1, 2, 3, 4, 6}, (B.4)

lim
T→∞

1
T

DT = Σ1, a.s.. (B.5)

The proofs of (B.3), (B.4) and (B.5) are established in the following subsections.
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Proof of assertion (B.3) To prove (B.3), we use the central limit theorem for triangular arrays of mar-
tingale differences (see Pollard (1984) Chapter VIII.1, Theorem 1). Using the Cramer-Wold device, it is
enough to prove that

1
√

T

T∑
t=p+1

Wtσ
2
t x′Ot xZt

D
→ N

(
0, x′Σ2x

)
, (B.6)

for each vector x ∈ Rn. We set

At = Wtσ
2
t x′Ot xZt, Ãt = Wtσ

2
t x′

(
Nt − q2

( t
T

)′
Mt

)
xZt.

Then, if Ft = σ (ξs : s ≤ t), the two families {(At,Ft) : 1 ≤ t ≤ T } and
{(

Ãt,Ft
)

: 1 ≤ t ≤ T
}

form a martin-
gale difference. Their corresponding partial sums are asymptotically equivalent because the quantity q2,t is
simply replaced by q2(t/T ) in the expression of Ãt. Indeed, we have

|At − Ãt| ≤ ‖x‖2 · |Zt| · ‖q2,t − q2 (t/T ) ‖ · ‖MtWtσ
2
t ‖.

Using the fact that MtWtσ
2
t is bounded uniformly in t and Lemma 5, 1., we deduce that 1√

T

∑T
t=1(At−Ãt)→ 0,

in probability. As a consequence, it is sufficient to prove (B.6) for Ãt instead of At. Moreover,

E
(
Ã2

t |Ft−1
)

= E|ξ2
0 − 1|2 · x′W2

t σ
4
t

(
Nt − q2

( t
T

)′
Mt

) (
Nt − q2

( t
T

)′
Mt

)′
x.

The process G defined by Gt = W2
t σ

4
t

(
Nt − q2

(
t
T

)′
Mt

) (
Nt − q2

(
t
T

)′
Mt

)′
is (coordinatewise) a process

of type I and Proposition 4 (point 4) leads to
limT→∞

1
T

∑T
t=p+1 Gt = 0 in probability. Moreover, using Lemma 1, Lemma 5 (A.3) and some Lipschitz

properties, one can show that

lim
T→∞

1
T

T∑
t=p+1

E|ξ2
0 − 1|2 · E(Gt) = lim

T→∞

1
T

T∑
t=p+1

E|ξ2
0 − 1|2E (G1(t/T )) = x′Σ2x.

Then we get 1
T

∑T
t=p+1 E

(
Ã2

t |Ft−1
)
→ x′Σ2x, in probability. Next, we check the Lindberg condition. If ε > 0,

we have
E

(
Ã2

t 1|Ãt |>ε
√

T |Ft−1
)
≤

1

εδT
δ
2

E|ξ2
0 − 1|2+δW2+δ

t σ4+2δ
t |x′

(
Nt − q2

( t
T

)′
Mt

)
x|2+δ.

We easily deduce that 1
T

∑T
t=p+1 E

(
Ã2

t 1|Ãt |>ε
|Ft−1

)
→ 0 in probability. This proves (B.6) and (B.3) follows.

Proof of 1√
T

N j,T = oP(1) for j ∈ {1, 3, 6} .
We only prove the result for j = 3. The two other cases can be treated in the same way. We set

η1,t = E−1(S 3,t)E
(
S 1,t

)
− q1,t ∈ M j,1. The proof of the result follows from the following points.

1. We first prove that 1√
T

∑T
t=p+1 Utη1,t = oP(1). It is enough to prove that for (w, y) ∈ ~1, n� × ~1,m�,

zT =
1
√

T

T∑
t=p+1

Ut(w, y)η1,t(y, 1) = oP(1).

But this assertion follows from Lemma 5 (3.) and Lemma 4, since Ez2
T can be bounded by b2 (up to a

positive constant).
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2. Now we prove that

1
√

T

T∑
t=p+1

UtE
−1(S 3,t)S̄ 1,t = oP(1). (B.7)

In order to prove (B.7), it is enough to prove that for a given vector (w, y, z) ∈ ~1, n�×~1,m�×~1,m�,

1
√

T

T∑
t=p+1

Ut(w, y)E−1(S 3,t)(y, z)S̄ 1,t(z, 1) = oP(1).

But the result is a direct consequence of Lemma 5 (point 2) and Proposition 4 (point 2 applied with
h = 1).

3. Using the same arguments as for point 2, one can easily show that

T∑
t=p+1

UtE
−1(S 3,t)S̄ 3,tE

−1(S 3,t)S̄ 1,t = oP
(√

T
)
,

T∑
t=p+1

UtE
−1(S 3,t)S̄ 3,tE

−1(S 3,t)E
(
S 1,t

)
= oP

(√
T
)
.

4. Finally, we prove that

1
√

T

T∑
t=p+1

UtS −1
3,t S̄ 3,tE

−1(S 3,t)S̄ 3,tE
−1(S 3,t)S 1,t = oP(1). (B.8)

Since Ut is uniformly bounded in ω, t,T , there exists C > 0 such that

‖
1
√

T

T∑
t=p+1

UtS −1
3,t S̄ 3,tE

−1(S 3,t)S̄ 3,tE
−1(S 3,t)S 1,t‖

≤
C
√

T
max

p+1≤i≤T
‖S −1

3,i ‖ ·

T∑
t=p+1

‖S̄ 3,t‖
2 · ‖S 1,t‖

≤ C max
p+1≤i≤T

‖S −1
3,i ‖ ·

√√√
1
T

T∑
t=p+1

‖S̄ 3,t‖4 ·

√√√ T∑
t=p+1

‖S 1,t‖2.

From Proposition 4, we have the bounds

max
p+1≤t≤T

E‖S̄ 3,t‖
4 = O

(
1

T 2b2

)
, max

p+1≤t≤T
E‖S̄ 1,t‖

2 = O
(

1
Tb

)
.

Then using the point 2 of Lemma 5, we conclude that 1
T

∑T
t=p+1 ‖S 1,t‖

2 = OP(1). Finally, using Lemma
5 (4.), we conclude that

‖
1
√

T

T∑
t=p+1

UtS −1
3,t S̄ 3,tE

−1(S 3,t)S̄ 3,tE
−1(S 3,t)S 1,t‖ = OP

(
1
√

Tb

)
.

Hence, (B.8) follows using the assumption b
√

T → ∞.
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Proof of 1√
T

N j,T = oP(1) for j ∈ {2, 4} .
We only prove the result for j = 4, the proof for the case j = 2 is similar. Here, we only use the basic

decompositions

q̂k,t − qk,t = ηk,t + E−1(S 3,t)S̄ k,t − S −1
3,t S̄ 3,tE

−1(S 3,t)S k,t, (B.9)

for k = 1, 2 and with
ηk,t = E−1(S 3,t)E

(
S k,t

)
− qk,t.

Then we have

‖N4,T ‖ ≤

T∑
t=p+1

‖q̂2,t − q2,t‖ · ‖Wt Mt J′t ‖ · ‖q̂1,t − q1,t‖

≤
C1

2

T∑
t=p+1

{
‖q̂2,t − q2,t‖

2 + ‖q̂1,t − q1,t‖
2
}
,

where C1 = supω,T,t ‖Wt Mt M′t ‖. It remains to prove that for k = 1, 2,

1
√

T

T∑
t=p+1

‖q̂k,t − qk,t‖
2 = oP(1). (B.10)

We only prove (B.10) for k = 1, the proof for k = 2 being the same. The proof easily follows from the three
following points.

1. From Lemma 5 (3.) and our bandwidth condition, we have 1√
T

∑T
t=p+1

‖η1,t‖
2

√
T

= o(1).

2. Since
C2 = sup

T≥p+1
p+1≤t≤T

‖E−1(S 3,t)‖

is finite using Lemma 5 (point 2), we use the inequality

1
√

T

T∑
t=p+1

‖E−1(S 3,t)S̄ 1,t‖
2 ≤

C2
2
√

T

T∑
t=p+1

‖S̄ 1,t‖
2.

But we know from Proposition 4 that maxp+1≤t≤T E
(
‖S̄ 1,t‖

2
)

= O
(

1
Tb

)
. Then condition b

√
T → ∞

entails that
1
√

T

T∑
t=p+1

E
(
‖S̄ 1,t‖

2
)

= o(1).

This shows that 1√
T

∑T
t=p+1 ‖E

−1(S 3,t)S̄ 1,t‖
2 = oP(1).

3. Finally, we show that

1
√

T

T∑
t=p+1

‖S −1
3,t S̄ 3,tm−1

t S 1,t‖
2 = oP(1). (B.11)
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We have ‖S −1
3,t S̄ 3,tE

−1(S 3,t)S 1,t‖
2 ≤ C2

2 maxp+1≤i≤T ‖S −1
3,i ‖

2‖S̄ 3,t‖
2‖S 1,t‖

2, where C2 > 0 is defined in
the previous point. We have maxp+1≤i≤T ‖S −1

3,i ‖
2 = OP(1) (see Lemma 5, point 4) and

E
(
‖S̄ 3,t‖

2 · ‖S 1,t‖
2
)
≤ E

δ
1+δ

(
‖S̄ 3,t‖

2 1+δ
δ

)
· E

1
1+δ

(
‖S 1,t‖

2(1+δ)
)
.

Without loss of generality, one can assume that 1+δ
δ is an integer. Using Proposition 4 (point 3), we

have maxp+1≤t≤T E
(
‖S̄ 3,t‖

2 1+δ
δ

)
= O

(
(Tb)−

1+δ
δ

)
. Moreover, using convexity, the moment assumption

on the noise and the fact that WiMiσ
2
i is bounded,

max
p+1≤t≤T

E‖S 1,t‖
2(1+δ) ≤ max

p+1≤i≤T
E‖WiMiX2

i ‖
2(1+δ) = O(1).

Then assertion (B.11) easily follows from the condition
√

Tb→ ∞.

B.1 Proof of assertion B.5

Recalling that Ôt = Ot −
(
q̂2,t − q2,t

)′ Mt, we have

DT =
1
T

T∑
t=p+1

WtOtO′t +
1
T

T∑
t=p+1

Wt
(
q̂2,t − q2,t

)′ Mt M′t
(
q̂2,t − q2,t

)
−

1
T

T∑
t=p+1

Wt
(
q̂2,t − q2,t

)′ MtO′t −
1
T

T∑
t=p+1

WtOt M′t
(
q̂2,t − q2,t

)
.

We have already shown that the three last terms in the previous decomposition are oP(1). Then, it remains
to show that

lim
T→∞

1
T

T∑
t=p+1

WtOtO′t = Σ1, (B.12)

in probability. One can obtain (B.12) using the same arguments as for deriving the limit of

1
T

T∑
t=p+1

E
(
Ã2

t |Ft−1
)

in the proof of assertion (B.3), .�

C Auxiliary results for the proof of Theorem 2

Corollary 3. Let (Yt)1≤t≤T be a process of type II. We denote by (S̄ t)1≤t≤T the corresponding smoothing.
Then, under the assumptions of Theorem 2, we have

max
1≤t≤T

|S̄ t| = oP
(
T−

1
4

)
.

Consequently, if for i ∈ {1, 2}, S̄ (i) is a smoothing then

max
1≤t1,t2≤T

|S̄ (1)
t1 S̄ (2)

t2 | = oP

(
1
√

T

)
.
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Proof of Corollary 3 We set j = 2
([

1
τ

]
+ 1

)
. Then using the point 4 of Proposition 3, we have

P

(
max

p+1≤t≤T
|S̄ t| > εT−

1
4

)
≤

CT
j
4

ε j

T∑
t=p+1

E|S̄ t|
j

≤ C
T

j
4

(Tb)
j
2

.

where C > 0 denotes a generic constant and ε > 0 is arbitrary. Since, T
j
4 +1

(Tb)
j
2
≤ 1(

T
1
2 −τb

) j
2

, the result follows

from the assumptions made on b.�
Finally, we state a Lemma which will be useful for the proof of Theorem 2. For a matrix-valued process

(Ht)t, measurable with the sigma field FT , we will use the equality Ht = oP
(

1√
T

)
when maxp+1≤t≤T ‖Ht‖ =

oP
(

1√
T

)
. We also introduce additional notations. For j = 1, 2, 3, we define S ∗j,t as S j,t, replacing Wt with 1

σ4
t
.

Lemma 6. Assume that the assumptions of Theorem 2 hold.

1. For j = 1, 2, we have

q̂ j,t − q j,t = η j,t + E−1(S 3,t)S̄ j,t − E
−1(S 3,t)S̄ 3,tE

−1(S 3,t)E(S j,t) + oP

(
1
√

T

)
,

and

‖q̂ j,t − q j,t‖
2 = oP

(
1
√

T

)
.

2. We have

Ŵ∗t =
1
σ4

t

{
1 −

2
σ2

t

(
M′t Lt + O′t

(
β̂ − β

))
+ oP

(
1
√

T

)}
,

with
Lt = q̂1,t − q1,t −

(
q̂2,t − q2,t

)
β.

In particular, we have Ŵ∗t = 1
σ4

t
(1 + Et) with E2

t = oP
(

1√
T

)
.

3. We have maxp+1≤t≤T ‖Ŝ −1
3,t ‖ = OP(1).

4. For j = 1, 2, 3, there exists two matrices a j,t and c j,t such that

ŝ∗j,t − E
(
S ∗j,t

)
= S ∗ j,t + R j,t + oP

(
1
√

T

)
, (C.1)

where

R j,t = a j,t
(
β̂ − β

)
+

T∑
i=p+1

kt,ic j,iLi = oP
(
T−1/4

)
.

Moreover, ‖ŝ∗j,t − E
(
S ∗j,t

)
‖2 = oP

(
1√
T

)
.
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5. For j = 1, 2, we have q̂∗j,t − q∗j,t = F∗j,t + ∆ j,t, where

F∗j,t = η∗j,t + E−1(S ∗3,t)S ∗ j,t − E
−1(S ∗3,t)S ∗3,tE

−1(S ∗3,t)E
(
S ∗j,t

)
,

∆ j,t = E−1(S ∗3,t)R j,t − E
−1(S ∗3,t)R3,tE

−1(S ∗3,t)E
(
S ∗j,t

)
+ oP

(
1
√

T

)
.

Moreover, ‖q̂∗j,t − q∗j,t‖
2 = oP

(
1√
T

)
.

Proof of Lemma 6

1. Under the assumptions of Theorem 2, we recall that S̄ t = oP
(
T−1/4

)
for all univariate smoothing (see

Corollary 3). Then, applying this property coordinatewise, we have ‖S j,t‖ = oP
(
T−1/4

)
for j = 1, 2, 3.

The announced decomposition is then a consequence of decomposition (6.4) given in the paper and
of Lemma 5, point 4. Next, the second assertion follows from the condition b2

√
T → 0 and Lemma

5 (point 3).

2. We use the decomposition

Ŵ∗t =
1
σ4

t

1 +
σ4

t − σ̂
4
t − νT

σ4
t

+

(
σ4

t − σ̂
4
t − νT

)2

σ4
t

(
σ̂4

t + νT
)

 . (C.2)

Now, using the fact that L2
t + ‖β̂ − β‖2 = oP

(
1√
T

)
, we get

σ̂4
t = σ4

t

(
1 +

2
σ2

t

(
O′t

(
β̂ − β

)
+ M′t Lt

)
+ oP

(
1
√

T

))
.

From this decomposition, we deduce that 1
σ̂4

t +νT
= OP(1). Then we get

Ŵ∗t =
1
σ4

t

{
1 −

2
σ2

t

(
O′t

(
β̂ − β

)
+ M′t Lt

)
+ oP

(
1
√

T

)}
,

which also yields to the approximation Ŵ∗t = 1
σ4

t
(1 + Et) with E2

t = oP
(

1√
T

)
.

3. We have

ŝ∗3,t = S ∗3,t +

T∑
i=p+1

kt,i
MiM′i
σ4

i

Ei

= S ∗3,t + oP(1).

Indeed, maxp+1≤t≤T
‖Mi M′i ‖
σ4

i
is bounded uniformly in (ω,T ) and from point 2, maxp+1≤t≤T ‖Et‖ = oP(1).

Then the result follows from the fact that maxp+1≤t≤T ‖(S ∗3,t)
−1‖ = OP(1).
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4. We only consider the case j = 1, the cases j = 2 or j = 3 being similar. Using the point 2, we have
the decomposition

ŝ∗1,t = S ∗1,t − 2
T∑

i=p+1

kt,i
O′i

(
β̂ − β

)
+ M′i Li

σ6
i

MiX2
i + oP

(
1
√

T

)
.

Now we set a1,t = −2
∑T

i=p+1 kt,iE
(

MiO′i X
2
i

σ6
i

)
and c1,t = −2

∑T
i=p+1 kt,iE

(
Mi M′i X2

i
σ6

i

)
. Moreover, we have

from Lemma 3

−2
T∑

i=p+1

kt,i
MiN′i X2

i

σ6
i

− a1,t = oP
(
T−

1
4

)
,

which leads to −2
T∑

i=p+1

kt,i
MiN′i X2

i

σ6
i

− a1,t

 · (β̂ − β) = oP

(
1
√

T

)
.

Then it remains to show that

T∑
i=p+1

kt,i

 MiM′i X2
i

σ6
i

− c1,i

 Li = oP

(
1
√

T

)
. (C.3)

Considering the decomposition given in point 1, assertion (C.3) will follow if we show the two follow-
ing assertions. For all real-valued sequences (ct) such that maxp+1≤t≤T ct = O(b) and all real-valued
processes (Yt), (Gt) of type I or II,

T∑
i=p+1

kt,iciȲi = oP

(
1
√

T

)
, (C.4)

and

T∑
i=p+1

kt,iȲiS̄ i = oP

(
1
√

T

)
, (C.5)

where

S̄ t =

T∑
i=p+1

kt,i (Gi − E(Gi)) .

The assertion (C.5) can be proved as follows. For ε > 0 and an even integer h > 0, we have

P

 max
p+1≤t≤T

|

T∑
i=p+1

kt,iȲiS̄ i| > ε
1
√

T

 ≤
T

h
2

εh

T∑
t=p+1

E|
T∑

i=p+1

kt,iȲiS̄ i|
h

≤
T

h
2 +1

εh

∑
p+1≤i1, j1,...,ih, jh≤T

pi1 p j1 · · · pih p jh |E
(
Ȳi1Ḡ j1 · · · ȲihḠ jh

)
|,
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where pi = maxp+1≤t≤T kt,i. Using Lemma 4, we deduce that the right hand side of the previous in-

equality is O
(

1

T
h
2 −1bh

)
But h

2 − 1 = h
2

(
1 − 2

h

)
≥ h

2 (1 − τ) when h ≥ 2
τ . Using the bandwidth conditions,

we get (C.5). Next, using Corollary 3 and the bandwidth conditions, we get

max
p+1≤t≤T

|

T∑
i=p+1

kt,iciS̄ i| ≤ max
p+1≤t≤T

|ct| × max
p+1≤t≤T

|S̄ t| = oP
(
bT−

1
4

)
= oP

(
1
√

T

)
.

This proves (C.4). Finally, since ‖Lt‖
2 = oP

(
1√
T

)
and β̂−β = OP

(
1√
T

)
, the decomposition (C.1) holds

true. Using some arguments discussed before, we easily get ‖ŝ∗1,t − E
(
S ∗1,t

)
‖2 = oP

(
1√
T

)
.

5. Using the equality

q̂∗j,t − q∗j,t = η∗j,t + E−1(S ∗3,t)
(
ŝ∗j,t − E

(
S ∗j,t

))
− E−1(S ∗3,t)

(
ŝ∗j,t − E

(
S ∗j,t

))
E−1(S ∗3,t)E

(
S ∗j,t

)
+

(
ŝ∗3,t

)−1 (
ŝ∗3,t − E

(
S ∗j,t

))
E−1(S ∗3,t)

(
ŝ∗3,t − E

(
S ∗3,t

))
E−1(S ∗3,t)ŝ∗j,t,

the result of point 5 is an easy consequence of the previous points.�

D Proof of Theorem 2

We recall that for a triangular array {Ht = Ht,T } of matrices, we will denote Ht = oP
(

1√
T

)
when

max
p+1≤t≤T

‖Ht‖ = oP

(
1
√

T

)
.

Notations. Let us also recall the following notations.

S ∗1,t =

T∑
t=p+1

kt,i
MiX2

i

σ4
i

, S ∗2,t =

T∑
t=p+1

kt,i
MiN′i
σ4

i

,

S ∗3,t =

T∑
t=p+1

kt,i
MiM′i
σ4

i

,

η∗1,t = E−1(S ∗3,t)E
(
S ∗1,t

)
− q∗1,t,

η∗2,t = E−1(S ∗3,t)E
(
S ∗2,t

)
− q∗2,t,

q∗1,t = E−1
(

Mt M′t
σ4

t

)
E

(
MtX2

t

σ4
t

)
, q∗2,t = E−1

(
Mt M′t
σ4

t

)
E

(
MtN′t
σ4

t

)
,

O∗t = Nt −
(
q∗2,t

)′
Mt.

The proof of Theorem 2 uses the same decomposition as for Theorem 1. More precisely, we have

β̂∗ − β = D̂−1
T

(
L̂1,Tβ − L̂2,Tβ − L̂3,T + L̂4,T + L̂5,T − L̂6,T

)
,
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where

L̂1,T =

T∑
t=p+1

Ŵ∗t O∗t M′t
(
q̂∗2,t − q∗2,t

)
,

L̂2,T =

T∑
t=p+1

Ŵ∗t
(
q̂∗2,t − q∗2,t

)′
Mt M′t

(
q̂∗2,t − q∗2,t

)
,

L̂3,T =

T∑
t=p+1

Ŵ∗t O∗t M′t
(
q̂∗1,t − q∗1,t

)
,

L̂4,T =

T∑
t=p+1

Ŵ∗t
(
q̂∗2,t − q∗2,t

)′
Mt M′t

(
q̂∗1,t − q∗1,t

)
,

L̂5,T =

T∑
t=p+1

Ŵ∗t O∗t Ztσ
2
t ,

L̂6,T =

T∑
t=p+1

Ŵ∗t
(
q̂∗2,t − q∗2,t

)′
MtZtσ

2
t .

D̂T =

T∑
t=p+1

Ŵ∗t O∗t
(
O∗t

)′
− L̂1,T − L̂′1,T + L̂2,T .

Using Lemma 6, it is easy to get
‖L̂2,T ‖ + ‖L̂4,T ‖ = oP

(√
T
)
.

Then the proof of Theorem 2 will follow from the three following points.

1. We first show that L j,T = oP
(√

T
)

for j = 1, 3, 6. We only consider the case j = 1, the proofs for the
cases j = 3, or j = 6 being similar. Using the notations introduced in Lemma 6 (points 2 and 5), we
have

L̂1,T =

T∑
t=p+1

(1 + Et) ·
O∗t M′t
σ4

t
·
(
F∗2,t + ∆2,t

)
.

The proof will be a consequence of the following points.

• Since O∗t M′t
σ4

t
is centered, we get 1√

T

∑T
t=p+1

O∗t M′t
σ4

t
F∗2,t = oP(1) The proof is similar to the proof

given in Theorem 1 (see the proof of 1√
T

N j,T = oP(1) for j = 1, 3, 6).

• Next, we prove that 1√
T

∑T
t=p+1

O∗t M′t
σ4

t
∆2,t = oP(1). First we will show that

1
√

T

T∑
t=p+1

O∗t M′t
σ4

t
E−1(S ∗3,t)R2,t = oP(1).

Using Lemma 6, we have the expression

R2,t = a2,t
(
β̂ − β

)
+

T∑
i=p+1

kt,ic2,iLi.
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Since O∗t M′t
σ4

t
is centered, we have

1
√

T

T∑
t=p+1

W∗t M′t
σ4

t
E−1(S ∗3,t)a2,t

(
β̂ − β

)
= oP(1).

Then, it remains to show that

1
√

T

T∑
t=p+1

O∗t M′t
σ4

t
E−1(S ∗3,t)

T∑
i=p+1

kt,ic2,iLi = oP(1). (D.1)

The assertion (D.1) will follow if we work with each entry of different matrices and if we prove
the following property. If (Yt) is a real-valued centered process of type I or II,

(
S̄ t

)
is a real-valued

smoothing of type I or II and (ct), (̃ct) are deterministic sequences satisfying maxp+1≤t≤T |ct| =

O(b) and maxp+1≤t≤T |̃ct| = O(1), then

1
√

T

T∑
t=p+1

Ytct = oP(1),
1
√

T

T∑
t=p+1

Yt

T∑
i=p+1

kt,ĩciS̄ i = oP(1). (D.2)

The first assertion in (D.1) has been already proved using the bound for the covariance function
of the process (Yt) (see the proof of 1√

T
L3,T = oP(1) in the proof of Theorem 1). Then it remains

to prove the second assertion in (D.2). Writing S̄ i =
∑T

j=p+1 ki, jY ′ j, we have

1
√

T

T∑
t=p+1

Yt

T∑
i=p+1

kt,ĩciS̄ i =
1
√

T

T∑
t, j=p+1

pt, jȲtY ′i,

with pt, j =
∑T

i=p+1 c̃ikt,iki, j satisfies maxp+1≤ j,t≤T |pt, j| = O
(

1
Tb

)
. Moreover, using Lemma 2, we

have for a generic constant C > 0,

E|
1
√

T

T∑
t, j=p+1

pt, jȲtY ′i|2 =
1
T

T∑
t1,t2, j1, j2=p+1

pt1, j1 pt2, j2 |E
(
Ȳt1Y ′t2 Ȳ j1Y ′ j2

)
|

≤
C

T 3b2

T∑
t1,t2, j1, j2=p+1

|E
(
Ȳt1Y ′t2 Ȳ j1Y ′ j2

)
|

≤
C

Tb2 .

Using the assumption Tb2 → ∞, we deduce the second assertion in (D.2). This proves (D.1).

• Finally, there exists a constant C > 0 such that

‖
1
√

T

T∑
t=p+1

Et ·
O∗t M′t
σ4

t
·
(
q̂∗2,t − q∗2,t

)
‖ ≤

1
√

T

T∑
t=p+1

‖O∗t M′t ‖

σ4
t
· max

p+1≤t≤T
|Et| × max

p+1≤t≤T
‖q̂∗2,t − q∗2,t‖.

Then using Lemma 6, we deduce that

1
√

T

T∑
t=p+1

Et ·
O∗t M′t
σ4

t

(
q̂∗2,t − q∗2,t

)
= oP(1).
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2. Next, we prove the following convergence in distribution: 1√
T

L̂5,T → Nn
(
0,Var

(
ξ2

1

)
Σ
)
. We have

1
√

T
L̂5,T =

1
√

T

T∑
t=p+1

O∗t
σ2

t
Zt +

1
√

T

T∑
t=p+1

EtO∗t
σ2

t
Zt

= AT + BT .

The convergence of (AT ) is obtained as in the proof of Theorem 1. Moreover, using the expression
of Et given in Lemma 6 and arguments which are now familiar, the convergence BT = oP(1) can be
obtained.

3. Finally we show that D̂T
T → Σ a.s. It just remains to prove that

1
T

T∑
t=p+1

Et

σ4
t

O∗t
(
O∗t

)′
= oP(1),

1
T

T∑
t=p+1

O∗t
(
O∗t

)′
σ4

t
→ Σ.

Using the fact that maxp+1≤t≤T ‖Et‖ = oP(1) and O∗t
σ2

t
is uniformly bounded in t,T, ω, the first assertion

follows. The second assertion has been already shown in the proof of Theorem 1 with general weights
Wt.�

E Proof of Theorem 3

The proof uses the arguments given in Fryzlewicz et al. (2008) (see Proposition 3 of that paper). We have
the decomposition

α̂t − α(u) = −q̂2,b′,t
(
β̂ − β

)
+ S −1

3,b′,t

(
At(u) − A#

t (u)
)

+ S −1
3,b′,tA

#
t (u). (E.1)

Note that

A#
t (u) =

T∑
i=p+1

wt,i(b′)Wi(u)Mi(u)σ2
i (u)Zi

and using the central limit theorem for martingale differences, we obtain as in Fryzlewicz et al. (2008),

√
Tb′A#

t (u)→ N j

(
0,Var (ξ2

1) ·
∫

K(x)2dx · E
(
W1(u)σ1(u)4M1(u)M1(u)′

))
.

From Theorem 1, we have β̂ − β = OP
(

1√
T

)
. Moreover, using Lemma 5 (point 4), and the fact that S 2,b′,t is

uniformly bounded in t,T, ω, we get

‖q̂2,b′,t‖ ≤ max
p+1≤t≤T

‖S −1
3,b′,t‖ · max

p+1≤t≤T
‖S 2,b′,t‖ = OP(1).

This leads to

q̂2,b′,t
(
β̂ − β

)
= oP

(
1
√

Tb′

)
. (E.2)
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Moreover we have

lim
T→∞

S 3,b′,t = E
(
W1(u)M1(u)M1(u)′

)
a.s. (E.3)

To justify (E.3), it is sufficient to show that for every real-valued process (Yt)p+1≤t≤T of the form Yt =

f
(

t
T , X

2
t−1, . . . , X

2
t−p

)
with f bounded and Lipschitz, we have

∑T
i=p+1 kt,i(b′)Yi → E (Y1(u)). Using Lemma 1,

the Lipschitz property of f and the properties of the kernel K, it is easy to get

‖

T∑
i=p+1

kt,i(b′)E
(
WiMiM′i

)
− E

(
W1(u)M1(u)M1(u)′

)
‖ = O

(
b′ +

1
T

)
.

For the stochastic part, we have, using Proposition 1,
∑T

i=p+1 kt,i(b′)Ȳi = OP
(

1√
Tb′

)
. This justifies the con-

vergence (E.3).
The convergence in distribution announced in Theorem 3 now easily follows from (E.2), (E.3) and

decomposition (E.1).�

F Proof of Theorem 4

In this proof, we will set

ât =

(
α̂t

β̂

)
, Xi =

(
Mi

Ni

)
, Xi(u) =

(
Mi(u)
Ni(u)

)
.

Then, setting at =

(
αt

β

)
, we have the expressions

σ̂2
t,i = X′i ât, σ̂2

t,i(u) = Xi(u)′ât.

As in the proof of Theorem 3, we have the decomposition

α̂∗,t − α(u) =
(
š3,b′,t

)−1 š2,b′,t
(
β − β̂

)
+

(
š3,b′,t

)−1

 T∑
i=p+1

kt,i(b′)W̌∗i (u)σi(u)2Mi(u)Zi + Bt(u) − B#
t (u)

 .
• We first show that š3,b′,t → E

(
M1(u)M1(u)′

σ1(u)4

)
in probability. We set t− = max(1, t − Tb′) and t+ =

min(T, t + Tb′). Define the following event

At,T = ∩t+
i=t−

{
σ̂2

t,i >
1
2
σ2

i

}
.

Note that we have,
σ̂2

t,i

σ2
i

= 1 +
X′i

σ2
i

(ât − ai)

and ‖Xi‖

σ2
i

is a random variable bounded by a constant C > 0. Then we have the inclusion

{
σ̂2

t,i ≤
1
2
σ2

i

}
⊂

{
max

t−≤i≤t+
‖ât − ai‖ ≥

1
2C

}
.
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But

max
t−≤i≤t+

‖ât − ai‖ ≤ ‖ât − a(u)‖ + max
t−≤i≤t+

‖a(u) − ai‖ ≤ C1

(
‖ât − a(u)‖ + b′ +

1
T

)
for a suitable constant C1 > 0 and from Theorem 1 and Theorem 3, ‖ât − a(u)‖ = OP

(
b′ + 1√

Tb′

)
.

This yields to maxt−≤i≤t+ ‖ât − ai‖ = OP
(
b′ + 1√

Tb′

)
. Then we conclude that P

(
Ac

t,T

)
→T→∞ 0. On the

event At,T , we have

|W̌∗t,i −
1
σ4

i

| =
|σ4

i − σ̂
4
t,i − µT |

σ4
i

(
σ̂4

t,i + µT
)

≤ 4
|σ4

i − σ̂
4
t,i − µT |

σ8
i

.

But since
σ̂2

t,i

σ2
i
− 1 =

X′i
σ2

i
(ât − ai), we conclude that

W̌∗t,i =
1
σ4

i

(
1 + Ft,i

)
,

with maxt−≤i≤t+ |Ft,i| = oP(1). Using the properties of the kernel K, this yields to

š3,b′,t =

T∑
i=p+1

kt,i(b′)
MiM′i
σ4

i

+ oP(1).

Using the arguments used in the proof of Theorem 3, we have
∑T

i=p+1 kt,i(b′)
Mi M′i
σ4

i
→ E

(
M1(u)M1(u)′

σ1(u)4

)
in

probability and the last expectation is also the limit of š3,b′,t.

• Next we show the convergence in distribution

√
Tb′

T∑
i=p+1

kt,i(b′)W̌∗t,i(u)Mi(u)σi(u)2Zi → Nm (0,V∗(u)) .

As shown in the proof of Theorem 3, this convergence holds if W̌∗t,i(u) is replaced with 1
σi(u)4 in the

last expression and it remains to show that

√
Tb′

T∑
i=p+1

kt,i(b′)
(
W̌∗t,i(u) −

1
σi(u)4

)
Mi(u)σi(u)2Zi → 0 (F.1)

in probability. We will use the following equality

W̌∗i (u) −
1

σi(u)4 =

`0∑
`=1

(
σi(u)4 − σ̂t,i(u)4 − µT

)`
σi(u)4`+4 +

(
σi(u)4 − σ̂t,i(u)4 − µT

)`0+1

σi(u)4`0+4σ̂t,i(u)4 .

First, it is easy to show that for ` = 1, . . . , `0,

√
Tb′

T∑
i=p+1

kt,i(b′)

(
σi(u)4 − σ̂t,i(u)4 − µT

)`
σi(u)4`+4 Mi(u)σi(u)2

(
ξ2

i − 1
)

= oP(1). (F.2)
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Indeed, using the equality

σ̂4
t,i(u)

σi(u)4 − 1 = (ât − ai)′
Xi(u)Xi(u)′

σi(u)4 (ât − ai) + 2
Xi(u)′

σi(u)2 (ât − ai) ,

developing
(
σ̂4

t,i(u)
σi(u)4 − 1

)`
and using the decomposition ât − ai = ât − a(u) + a(u) − ai it is clear that

T∑
i=p+1

kt,i(b′)

(
σi(u)4 − σ̂t,i(u)4

)`
σi(u)4`+4 Mi(u)σi(u)2Zi

is composed of terms which write as a product of factors involving some coordinates of the vector
ât−at, µT and of one factor of type

∑T
i=p+1 kt,i(b′)Ou,t,i

(
ξ2

i − 1
)

where Ou,t,i is bounded and measurable

w.r.t σ (ξi−s : s ≥ 1). Such a term is oP
(

1√
Tb′

)
because ât − a(u) = oP(1) and since

(
Ou,t,iZi

)
p+1≤i≤T is

a sequence of martingale differences, we have

T∑
i=p+1

kt,i(b′)Ou,t,iZi = OP

(
1
√

Tb′

)
.

This proves (F.2).

Now we consider the remainder term. Recall that maxt−≤i≤t+ ‖ât − ai‖ = OP
(
b′ + 1√

Tb′

)
. Using the

assumption on b′, this entails

max
t−≤i≤t+

(
1 −

σ̂t,i(u)4

σi(u)4 −
µT

σi(u)4

)`0+1

= OP

(b′ + 1
√

Tb′

)`0+1 = oP

(
1
√

Tb′

)
. (F.3)

If we define

At,T (u) = ∩t+
i=t−

{
σ̂2

t,i(u) >
1
2
σi(u)2

}
,

we have P
(
At,T (u)c)→T→∞ 0 (the proof is the same as for At,T ). Moreover we have, using (F.3),

1At,T (u)

∥∥∥∥∥∥∥∥∥
T∑

i=p+1

kt,i(b′)Mi(u)σ2
i (u)

(
σi(u)4 − σ̂t,i(u)4 − µT

)`0+1

σi(u)4`0+4σ̂t,i(u)4

(
ξ2

i − 1
)∥∥∥∥∥∥∥∥∥

≤ 4 max
t−≤i≤t+


∣∣∣∣∣∣1 − σ̂t,i(u)4

σi(u)4 −
µT

σi(u)4

∣∣∣∣∣∣`0+1

·
‖Mi(u)‖
σi(u)2

 · T∑
i=p+1

kt,i(b′)|ξ2
i − 1|

= oP

(
1
√

Tb′

)
.

Then, we conclude that

T∑
i=p+1

kt,i(b′)

(
σ4

i (u) − σ̂4
t,i(u) − µT

)`0+1

σi(u)4`0+4σ̂4
t,i(u)

Mi(u)σi(u)2Zi = oP

(
1
√

Tb′

)
.

This shows (F.1).
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• Finally, we show that Bt(u) − B#
t (u) = OP(b′). We consider the event Ãt,T = At,T ∩ At,T (u). We have

of course limT→∞ P
((

Ãt,T
)c)

= 0. We will just show that

Ht = š1,b′,t −

T∑
i=p+1

kt,i(b′)W̌∗t,i(u)Mi(u)Xi(u)2 = OP(b′),

the control of the difference being the same for the two other quantities š2,b′,t and š3,b′,t. Since
P
(
Ãt,T

)
→ 0, we have Ht1(

Ãt,T
)c = OP(b′). Now, on the event Ãt,T , we have

W̌∗t,iMiX2
i − W̌∗t,i(u)Mi(u)X2

i (u) =
Mi√

σ̂4
t,i + µT

Fi +
Xi(u)2√

σ̂4
t,i(u) + µT

Gi,

where

Fi =
X2

i√
σ̂4

t,i + µT

−
Xi(u)2√

σ̂t,i(u)4 + µT
,

Gi =
Mi√

σ̂4
t,i + µT

−
Mi(u)√

σ̂t,i(u)4 + µT
.

On Ãt,T we have for a suitable constant C > 0,

|Fi|

≤
|X2

i − Xi(u)|

σ2
i

+ ξ2
i ·
|σ̂2

t,i − σ̂
2
t,i(u)|

σ2
i

·
σ̂2

t,i + σ̂2
t,i(u)

σ2
i + σ2

i (u)

≤ C

|X2
i − Xi(u)2| + ‖ât‖

2ξ2
i

p∑
`=1

|X2
i−` − X2

i−`(u)|

 .
Moreover, 1Ãt,T

Mi√
σ̂4

t,i+µT

is bounded uniformly in t, i,T, ω. Then, we obtain for a suitably chosen

constant D > 0,

1Ãt,T

∥∥∥∥∥∥∥∥∥
T∑

i=p+1

kt,i(b′)
Mi√

σ̂4
t,i + µT

Fi

∥∥∥∥∥∥∥∥∥
≤ D


T∑

i=p+1

kt,i(b′)|X2
i − Xi(u)2| + ‖ât‖

2
p∑
`=1

T∑
i=p+1

kt,i(b′)ξ2
i |X

2
i−` − X2

i−`(u)|

 .
Using the fact that ‖ât‖ = OP(1), the support condition on the kernel K and Lemma 1, we conclude
that

1Ãt,T

T∑
i=p+1

kt,i(b′)
Mi√

σ̂4
t,i + µT

Fi = OP(b′).
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Similarly, we also get

1Ãt,T

T∑
i=p+1

kt,i(b′)
Xi(u)2√

σ̂4
t,i(u) + µT

Gi = OP(b′).

This proves that Ht1Ãt,T
= OP(b′) and then Ht = OP(b′). The proof is now complete.�

G Auxiliary results for the proof of Theorem 5

In this section, we assume that the assumptions of Theorem 5 hold true. The quantities studied in the
following lemma are defined in (H.1).

Lemma 7. We set B = [0, b] ∪ [1 − b, 1].

1. We have maxu∈[0,1] ‖E(Bu)‖ = O(b) and for all positive integer q, maxu∈[0,1] E
(
‖B̄u‖

2q
)

= O
(

bq

T q

)
.

2. maxu∈[0,1] E
(
‖∆u‖

4
)

= O
(
(Tb)−2

)
.

3. We have for all positive integer q,

max
u∈B
E‖S u − κu‖

2q = O(1), max
u∈[b,1−b]

E‖S u − κu‖
2q = O

(
b2q + (Tb)−q

)
.

4. We set Ru = R̃uS −1
u . We have maxu∈[0,1] ‖S −1

u ‖ = OP(1), maxu∈[b,1−b] E
(
‖R̃u‖

2q
)

= O
(
b4q + (Tb)−2q

)
and maxu∈B E

(
‖R̃u‖

2q
)

= O(1).

Proof of Lemma 7

1. The first assertion is obvious. For the second assertion, we use Lemma 2. It is sufficient to show that
for some subscripts y,w,

max
u∈[0,1]

E|
T∑

i=p+1

zi(u)WiXi,yXi,w|
2q = O

(
bq

T q

)
,

where zi(u) = ei(u) (aw(i/T ) − aw(u)) satisfies

max
p+1≤i≤T,u∈[0,1]

|qi(u)| = O
(

1
T

)
and max

u∈[0,1]

T∑
i=p+1

zi(u) = O(b).

Then the result follows from Lemma 2 if we write the moment of order 2q as a multiple sum.

2. The result follows from Proposition 3.

3. Using Proposition 3, we have maxu∈[0,1] E‖S̄ u‖
2q = O

(
1

(Tb)q

)
. Moreover for the bias part

E(S u) − κu =

T∑
i=p+1

ei(u)
(
E

(
WiXiX

′
i

)
− κu

)
+

 T∑
i=p+1

ei(u) − 1

 κu.
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The first term is bounded by C
(
b + 1

T

)
where C > 0 does not depend on u,T and

max
u∈I

∣∣∣ T∑
i=p+1

ei(u) − 1
∣∣∣

is O
(

1
Tb

)
or O(1) when I = [b, 1 − b] or I = [0, 1] \ [b, 1 − b] respectively.

4. Since S t/T = 1
Tb

∑T
i=p+1 K

(
t−i
Tb

)
WiXiX

′
i , note that if |u − t

T | ≤
1
T , then ‖S u − S t/T ‖ ≤

C
Tb2 where C > 0

does not depend on u, t and T (we recall that WiXiX
′
i is bounded). Then it is sufficient to show that

maxp+1≤t≤T ‖S −1
t/T ‖ = OP(1). This can be proved as in Lemma 5, point 4. Details are omitted. The

other assertions are a consequence of the previous point and of the bound ‖R̃u‖ ≤ C‖S u − κu‖
2.�

Lemma 8. Let
(̃
Γ(u)

)
u∈[0,1]

be a family of positive definite matrices such that u 7→ Γ̃(u) is Lipschitz. Set

VT =
∫ 1

0 Λ′uΓ̃(u)Λudu. Then

T
√

b (VT − E (VT ))→T→∞ N
(
0, 4‖K∗‖22Var 2

(
ξ2

1

)
ζ
)
,

where

ζ =

∫ 1

0
tr

((̃
Γ(u)G(u)

)2
)

du, G(u) = E
(
W1(u)2σ1(u)4X1(u)X1(u)′

)
.

Moreover

E (VT ) =
Var

(
ξ2

1

)
‖K‖22

Tb
·

∫ 1

0
tr

(̃
Γ(u)G(u)

)
du + o

(
1

T
√

b

)
.

Proof of Lemma 8 We set for i, j ∈ ~p + 1,T�, Qi, j =
∫ 1

0 ei(u)e j(u)̃Γ(u)du. Moreover, let Yi = Wiσ
2
iXi.

Then

VT =

T∑
i,`=p+1

Z`ZiY
′
i Qi,`Y`.

We use the decompositionVT = 2V1,T +V2,T with

V1,T =
∑

p+1≤`<i≤T

Z`ZiY
′
i Qi,`Y`,

and

V2,T =

T∑
i=p+1

Z2
i Y
′
i Qi,iYi.

Note that E (VT ) = E
(
V2,T

)
and maxi,` ‖Qi,`‖ = O

(
b

(Tb)2

)
.

• We first show that

T
√

b
(
V2,T − E

(
V2,T

))
= oP(1). (G.1)

To show this, we decompose

V2,T − E
(
V2,T

)
= V2,1,T + E(Z2

1)V2,1,T ,
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with

V2,1,T =

T∑
i=p+1

(
Z2

i − EZ2
i

)
Y′i Qi,iYi,

V2,2,T =

T∑
i=p+1

Y′i Qi,iYi.

Since (Yi) is bounded and V2,1,T is a sum of uncorrelated random variables, the second moment of
V2,1,T is O

(
1

T 3b3

)
. Then T

√
bV2,1,T = oP(1). Moreover, one can decomposeV2,2,T as a finite sum of

terms of order OP
(

1√
T 3b2

)
. This can be easily seen taking the second moment of these terms and then

using Lemma 2. This leads to (G.1).

• Next, we prove the assertion on E
(
V2,T

)
. We have

E
(
V2,T

)
= Var

(
ξ2

1

) T∑
i=p+1

E
(
Y′i Qi,iYi

)
= Var

(
ξ2

1

) T∑
i=p+1

∫ 1

0

1
(Tb)2 K2

u − i
T

b

E (
Y1 (i/T )′ Γ̃(u)Y1 (i/T )

)
du + O

(
b

(Tb)2

)

= Var
(
ξ2

1

) T∑
i=p+1

∫ 1

0

1
(Tb)2 K2

u − i
T

b

 duE
(
Y1 (i/T )′ Γ̃

( i
T

)
Y1 (i/T )

)
+ O

(
1
T

)
.

Next, note that for a Lipschitz function f : [0, 1]→ R,

1
Tb

T∑
i=p+1

∫ 1

0
K2

u − i
T

b

 f
( i
T

)
du −

∫ 1

0
f (u)du‖K‖22 = O

(
b +

1
Tb

)
.

This yields to

E
(
V2,T

)
−

Var
(
ξ2

1

)
Tb

∫ 1

0
E

(
Y1(u)′Γ̃(u)Y1(u)

)
du‖K‖22 = O

(
1
T

+
1

(Tb)2

)
.

But using the fact that Tb3/2 → ∞, the last quantity is O
(

1
T
√

b

)
.

• Finally, we study the convergence in distribution of V1,T . The argument is to apply the central
limit theorem for martingales differences. First, we show the Lindberg condition. We set Pi =∑i−1
`=p+1 Z`Y′`Qi,`Yi. ThenV1,T =

∑T
i=p+1PiZi. It is enough to show that

(
T
√

b
)4

T∑
i=p+1

E
(
P4

i Z4
i

)
= o(1). (G.2)
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Using the independence between Zi and Pi, the fact thatYi is bounded and the Burhhölder inequality,
we have for a generic constant C > 0,

E
(
P4

i Z4
i

)
≤ CE

‖ i−1∑
`=p+1

Z`Y′`Qi,`‖
4


≤ C

 i−1∑
`=p+1

‖Qi,`‖
2


2

= O

 1(
T 3b2)2

 .
This leads to (G.2), using the condition Tb2 → ∞. Now, to obtain the convergence mentioned in
Lemma 8, it remains to prove that

T 2bE
(
Z2

1

) T∑
i=p+1

P2
i − ‖K

∗‖22E
2
(
Z2

1

)
ζ = oP(1). (G.3)

We will use the following decomposition

T∑
i=p+1

P2
i =

T∑
i=p+1

Ai + 2B1 + B2,

where

Ai =

i−1∑
`,m=p+1

Z`Y′`Qi,`YiY
′
i Qi,mYmZm

=

∫ 1

0

∫ 1

0

T∑
`,m=p+1

ei(u)ei(v)e`(u)em(v)Bi,`,m(u, v)dudv,

with
Bi,`,m(u, v) = Z`Y′`Γ̃(u)YiY

′
i Γ̃(v)YmZm

and
B1 =

∑
p+1≤`<m≤T

Z`Y′`E`,mYmZm,

B2 =

T∑
`=p+1

Z2
`Y
′
`E`,`Y`,

E`,m =

T∑
i=`∨m+1

Qi,`E
(
YiY

′
i

)
Qi,m.

We also set pi,`,m(u, v) = ei(u)ei(v)e`(u)em(v) = O
(

1
(Tb)4

)
.
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– We first show that T 2b
∑T

i=p+1 Ai = oP(1). We have

E

| T∑
i=p+1

Ai|
2


≤

∫ 1

0

∫ 1

0

T∑
i,i′=p+1

∑
p+1≤`,m<i

∑
p+1≤`′,m′<i′

pi,`,m(u, v)pi′,`′,m′(u, v)|E
(
Bi,`,m(u, v)Bi′,`′,m′(u, v)

)
|dudv

≤

∫
|u−v|≤2b

∑
i,`,m∈Mu

∑
i′,`′,m′∈Mu

pi,`,m(u, v)pi′,`′,m′(u, v)|E
(
Bi,`,m(u, v)Bi′,`′,m′(u, v)

)
|dudv,

whereMu =
{
s ∈ ~p + 1,T� : | sT − u| ≤ 3b

}
. Then the last quantity is

O
(
b

1
(Tb)8 (Tb)3

)
= O

(
1

T 5b4

)
.

Indeed, pi,`,m(u, v) can be bounded by 1
(Tb)4 (up to a constant) and we can apply Lemma 2 with

zT,i = 1i∈Mu . Since T 4b2

T 5b4 = 1
Tb2 → 0, we get the result.

– Next, we show that T 2bB1 = oP(1). Using the fact that (Yi)i is bounded and the Burkhölder
inequality, we get

E
∣∣∣ ∑

p+1≤`<m≤T

Z`Y′`E`,mYmZm
∣∣∣2 ≤ C

T∑
m=p+1

m−1∑
`=p+1

‖E`,m‖
2 ≤ C

∑
|`−m|≤4Tb

‖E`,m‖
2.

Since max`,m ‖E`,m‖ = O
(

1
T 3b

)
, we find that

E
∣∣∣ ∑

p+1≤`<m≤T

Z`Y′`E`,mYmZm
∣∣∣2 = O

(
1

T 4b

)
.

This proves T 2bB1 = oP(1).

– Finally, we study the convergence of T 2bB2. First, observing that maxp+1≤`≤T ‖E`,`‖ = O
(

b2

(Tb)3

)
and using Lemma 2, we get

T∑
`=p+1

{
Z2
`Y
′
`E`,`Y` − E

(
Z2
`Y
′
`E`,`Y`

)}
= OP

(
1

√
T 5b2

)
.

Then it remains to show that

T 2b
T∑

`=p+1

E
(
Y′`E`,`Y

′
`

)
− ‖K∗‖2ζ = oP(1). (G.4)

We first note that

T∑
`=p+1

E
(
Y′`E`,`Y`

)
=

∑
p+1≤`<i≤T

tr
(
E

(
Y′`Y`

)
Qi,`E

(
YiY

′
i

)
Qi,`

)
.
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Next, one can verify (we skip the details) that one can replace E
(
YiY

′
i

)
with E

(
Y`Y

′
`

)
and Qi,`

with
∫ 1

0 ei(u)e`(u)duΓ̃
(
`
T

)
without changing the limit in (G.4). Then it remains to study the limit

of

T 2b
T∑

`=p+1

f`sT,`,

where

f` = tr
([
E

(
Y`Y

′
`

)
Γ̃

(
`

T

) ]2
)
,

and

sT,` =

T∑
i=`+1

(∫ 1

0
ei(u)e`(u)du

)2

= O
(

1
T 3b

)
.

Note first that ∑
p+1≤`≤Tb

f`sT,` +

T∑
`=T (1−3b)

f`sT,` = O
(

1
T 2

)
.

Moreover, if Tb ≤ ` ≤ T (1 − 3b), we have

sT,` =

`+2Tb∑
i=`+1

1
T 4b2 H

(
i − `
Tb

)2

,

where H(x) =
∫ 1
−1 W(v)W(x + v)dv. Since

1
Tb

2Tb∑
k=1

H
(

k
Tb

)2

− ‖K∗‖22 = O
(

1
Tb

)
and

1
T

T (1−3b)∑
`=Tb

f` →
∫ 1

0
tr

([
E

(
Y1(u)Y1(u)′

)
Γ̃(u)

]2
)

du = ζ,

we get (G.4).�

H Proof of Theorem 5

The proof of Theorem 5 uses two lemma, Lemma 7 and Lemma 8, which are stated in the next section. We
set κ̃u = Aκ−1

u and Yi = Wiσ
2
iXi. Under the null assumption (β is non time-varying), we use the following

decomposition of the difference β̂ − β.

β̃(u) − β = κ̃uΛ(u) + κ̃uB̄u + zu +
[̃
κu (κu − S u) κ−1

u + Ru
]
· [Bu + Λu] , (H.1)

where

Λu =

T∑
i=p+1

ei(u)YiZi, Bu =

T∑
i=p+1

ei(u)WiXiX
′
i (a(i/T ) − a(u)) ,

Ru = κ̃u (κu − S u) κ−1
u (κu − S u) S −1

u , zu = κ̃u

T∑
i=p+1

ei(u)
[
E

(
WiXiX

′
i

)
− κu

]
· [a(i/T ) − a(u)] .
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Note that maxu∈[0,1] ‖zu‖ = O
(

b
T + b2

)
= O

(
b2

)
. The first part of Theorem 5 will follow from Lemma 8, if

we show that∫ 1

0

(
β̃(u) − β

)′
Γ(u)

(
β̃(u) − β

)
du −

∫ 1

0
Λ′ũκ(u)′Γ(u)̃κuΛudu = oP

(
1

T
√

b

)
. (H.2)

We set H(u) = κ̃uΓ(u)̃κu. To show (H.2), we use the previous decomposition and proceed as follows.

1. We first show that

T
√

b
∫ 1

0
B̄′uH(u)Λudu = oP(1). (H.3)

We have for a suitable constant C > 0,

max
u∈[0,1]

E
∣∣∣B̄′uH(u)Λu

∣∣∣ ≤ C max
u∈[0,1]

√
E

(
‖B̄u‖

2
)
· E

(
‖Λu‖

2).
Then using Lemma 7, we get

max
u∈[0,1]

E
∣∣∣B̄′uH(u)Λu

∣∣∣ = O
(

1
T

)
and (H.3) easily follows.

2. Next we show that

T
√

b
∫ 1

0
B̄′uH(u)B̄udu = oP(1). (H.4)

Using Lemma 7, we have maxu∈[0,1] E‖B̄u‖
2 = O

(
b
T

)
and (H.4) easily follows.

3. Next, we prove that∫ 1

0
z′uΓ(u)̃κuΛudu = oP

(
1

T
√

b

)
. (H.5)

We have

E
∣∣∣ ∫ 1

0
z′uΓ(u)̃κuΛudu

∣∣∣ = O
(

max
u∈[0,1]

‖zu‖ ·

√
E

(
‖Λu‖

2)) .
Then using Lemma 7, we get

E
∣∣∣ ∫ 1

0
z′uΓ(u)̃κuΛudu

∣∣∣ = O
(

b2
√

Tb

)
.

This leads to (H.5), using our bandwidth conditions.

4. Under our bandwidth conditions, we have T
√

b
∫ 1

0 z′uΓ(u)zudu = O
(
Tb4.5

)
= o(1).

5. Next we show that∫ 1

0
Λ′uH(u) (κu − S u) κ−1

u (Bu + Λu) du = oP

(
1

T
√

b

)
. (H.6)
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If I is a subinterval of [0, 1], we have for a positive constant C,

E
∣∣∣ ∫

I
Λ′uH(u) (κu − S u) κ−1

u

(
B̄u + Λu

)
du

∣∣∣
≤ C · |I| ·max

u∈I
E1/3

(
‖Λu‖

3
)
· E1/3

(
‖κu − S u‖

3
)
·
(
E1/3

(
‖B̄u‖

3
)

+ E1/3
(
‖Λu‖

3
))
.

When I = [0, b] ∪ [1 − b, 1], the last bound is O
(

1
T

)
, using Lemma 7. Then,∫

I
Λ′uH(u) (κu − S u) κ−1

u

(
B̄u + Λu

)
du = oP

(
1

T
√

b

)
.

When I = [b, 1 − b], Lemma 7 leads to∫
I
Λ′uH(u) (κu − S u) κ−1

u

(
B̄u + Λu

)
du = O

(
1

Tb
·

(
b +

1
√

Tb

))
.

Using our bandwidth conditions, this yields to∫ 1

0
Λ′uH(u) (κu − S u) κ−1

u

(
B̄u + Λu

)
du = oP

(
1

T
√

b

)
.

Moreover, if I = [0, b] ∪ [1 − b, 1] or I = [b, 1 − b], we have

E
∣∣∣ ∫

I
Λ′uH(u) (κu − S u) κ−1

u E(Bu)du
∣∣∣

≤ Cb|I|max
u∈I

√
E‖S u − κu‖

2 max
u∈[0,1]

√
E‖Λu‖

2

≤ C

√
b
√

T
|I|max

u∈I

√
E‖S u − κu‖

2.

Using Lemma 7 and our bandwidth conditions, we also obtain
∫ 1

0 Λ′uH(u) (κu − S u) κ−1
u E(Bu)du =

oP
(

1
T
√

b

)
and then (H.6).

6. Next, setting Mu = κ̃u (κu − S u) κ−1
u (Bu + Λu), we show that

T
√

b
∫ 1

0
M′uΓ(u)Mudu = oP(1). (H.7)

Using Lemma 7, we have

E‖Mu‖
2 ≤ C

√
E

(
‖κu − S u‖

4) · E (
‖Bu + Λu‖

4) ≤ C
√
E

(
‖κu − S u‖

4) (b2 +
1

Tb

)
.

Then, studying E
∣∣∣ ∫

I M′uΓ(u)Mudu
∣∣∣ when I = [0, b] ∪ [1 − b, 1] or I = [b, 1 − b], (H.7) follows using

the previous bound, Lemma 7 and our bandwidth conditions.
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7. Next we prove that

T
√

b
∫ 1

0
Λ′uΓ(u)Ru (Bu + Λu) du = oP(1). (H.8)

When I = [b, 1 − b] or I = [0, b] ∪ [1 − b, 1], we use the bound

∣∣∣ ∫ 1

0
Λ′uΓ(u)Ru (Bu + Λu) du

∣∣∣2
≤ C

∫
I
‖Λu‖

2
(
‖Bu‖

2 + ‖Λu‖
2
)

du ·
∫

I
‖Ru‖

2du.

Moreover, using Lemma 7, we have

E

∫
I
‖Λu‖

2
(
‖Bu‖

2 + ‖Λu‖
2
)

du ≤ 2|I| max
u∈[0,1]

√
E‖Λu‖

4 ·
√
E‖Bu‖

4 + E‖Λu‖
4 = |I| × O

(
b
T

+
1

(Tb)2

)
.

Now, if I = [0, b] ∪ [1 − b, 1], we have
∫

I ‖Ru‖
2du = OP(b) and we obtain from the previous bounds

∣∣∣ ∫ 1

0
Λ′uΓ(u)Ru (Bu + Λu) du

∣∣∣2 = OP

(
b3

T
+

1
T 2

)
= oP

(
1

T 2b

)
.

Now, if I = [b, 1 − b], we have, from Lemma 7,
∫

I ‖Ru‖
2du = OP

(
b4 + 1

(Tb)2

)
and then

∣∣∣ ∫ 1

0
Λ′uΓ(u)Ru (Bu + Λu) du

∣∣∣2 = OP

((
b
T

+
1

(Tb)2

)
·

(
b4 +

1
(Tb)2

))
.

This is clearly oP
(

1
T 2b

)
under our bandwidth conditions. Then (H.8) follows.

8. Finally, setting Mu = Ru (Bu + Λu), we show that

T
√

b
∫ 1

0
M′uΓ(u)Mudu = oP(1). (H.9)

We have ∫
I

M′uΓ(u)Mudu ≤ max
u∈[0,1]

‖S −1
u ‖

2 ·

∫
I
‖Bu + Λu‖

2 · ‖R̃u‖
2du.

Moreover,

E

∫
I
‖Bu + Λu‖

2 · ‖R̃u‖
2du

≤ |I| ·max
u∈I

√
E‖R̃u‖

4 ·
( √
E‖Bu‖

4 +
√
E‖Λu‖

4
)

≤ |I| ·max
u∈I

√
E‖R̃u‖

4 · O
(
b2 +

1
Tb

)
.

Considering the two cases for I, (H.9) follows from Lemma 7 and the bandwidth conditions.
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The first part of the theorem is now complete. Now we prove that the asymptotic of our statistic remains the

same if we replace β with the estimate β̂ of Theorem 1. Since β̂ − β = OP
(

1√
T

)
, we have

S T
(̃
a, β̂

)
− S T (̃a, β) = −2IT + OP

(
1
T

)
,

where IT =
∫ 1

0

(
β̂ − β

)′
Γ(u)

(
β̃(u) − β

)
du and it remains to prove that

IT = oP

(
1

T
√

b

)
. (H.10)

Using decomposition (H.1), we have already shown that∫ 1

0

(
β̃(u) − β − κ̃uΛu

)′
Γ(u)

(
β̃(u) − β − κ̃uΛu

)
du = oP

(
1

T
√

b

)
.

Using Cauchy-Schwarz inequality, it is easily seen that∫ 1

0

(
β̂ − β

)′
Γ(u)

(
β̃(u) − β − κ̃uΛu

)
du = oP

(
1

T
√

b

)
.

Then to show (H.10), it remains to show
∫ 1

0 Γ(u)̃κ(u)Λ(u)du = oP
(

1√
Tb

)
. We have∫ 1

0
Γ(u)̃κ(u)Λ(u)du

=

T∑
i=p+1

∫ 1

0
Γ(u)̃κ(u)ei(u)du · YiZi

= OP

(
1
√

T

)
.

The last equality follows after noticing that maxp+1≤i≤T ‖
∫ 1

0 Γ(u)̃κ(u)ei(u)du‖ = O
(

1
T

)
and applying Lemma

2 componentwise. Then we get (H.10). The proof of Theorem 5 is now complete.�

I Proof of Proposition 3

Setting Ĥt = X2
t − d̂t and Ht = X2

t − EX2
t for p + 1 ≤ t ≤ T , we have

β̂ =
(
â1, . . . , âp

)′
=

 T∑
i=p+1

ĤtĤ
′
t


−1 T∑

t=p+1

ĤtĤt,

where Ĥt =
(
Ĥt−1, . . . , Ĥt−p

)′
. We use the decomposition

Ĥt = Ht + EXt −

T∑
i=p+1

kt,iEX2
i −

T∑
i=p+1

kt,iHi.
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To prove the result, we will show that

1
√

T

T∑
t=p+1

Ht

T∑
i=p+1

kt−s,iHi = oP(1), s ≤ t (I.1)

and

1
√

T

T∑
t=p+1

T∑
i=p+1

kt,iHi ·

T∑
i=p+1

kt−s,iHi = oP(1), s ≤ t. (I.2)

Using (I.1) and (I.2) and some arguments given in the proof of Theorem 1, one can show that
√

T β̂ has
the same asymptotic distribution than the same estimator but with Ĥ replaced by H. Then one can deduce
that

√
T β̂ converges to a p−dimensional Gaussian vector with distribution Np

(
0, σ2Ip

)
and the result of

Proposition 3 easily follows. Let us prove (I.1) and (I.2).

1. For (I.1), we decompose the sum into two terms,

T∑
t=p+1

Ht

T∑
i=p+1

kt−s,iHi =

T∑
t=p+1

kt−s,tH2
t +

∑
i,t

kt−s,iHiHt.

The expectation of the (positive) first term is smaller to C/b where C is a positive constant. Under the
assumptions of Proposition 3, we have Tb2 → 0. Then the latter expectation is o

(√
T
)
. The variance

of the second term is∑
i,t,i′,t′

kt−s,ikt′−s,i′E (HiHtHi′Ht′)

=
∑
i,t

k2
t−s,iE

(
H2

i

)
E

(
H2

t

)
+

∑
i,t

kt−s,iki−s,tE
(
H2

i

)
E

(
H2

t

)
.

It is easy to show that this variance is of order O
(
b−1

)
= o(T ). This shows (I.1).

2. Next we show (I.2). The H′i s are independent. One can use the results given in Zhang and Wu (2012),
Lemma A1 and A3, from which we deduce that

max
p+1≤t≤T

∣∣∣∣∣∣∣∣
T∑

i=p+1

kt,iHi

∣∣∣∣∣∣∣∣ =

OP
(
T

1
2(1+δ) +

√
Tb log(T )

)
Tb

.

Using our bandwidth conditions, this entails (I.2).

The proof of Proposition 3 is now complete.�

J Asymptotic semiparametric efficiency

J.1 Proof of Proposition 2

We set gt = g(t/T ) and et =
M′t gt+L′t h

σ2
t

. Then using the inequalities

0 ≤ 1 −
1

1 + x
− x + x2 ≤ x3, log(1 + x) − x +

x2

2
≤ x3, x ≥ 0,
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we have

log
dPT,α+

g
√

T
,β+ h√

T

dPT,α,β

(
Xp+1, . . . , XT

)
=

1
2

T∑
t=p+1

X2
t

σ2
t

1 − 1
1 +

et√
T

 − log
(
1 +

et
√

T

)
= ∆T,g,h −

1
2T

T∑
t=p+1

(
ξ2

t −
1
2

)
e2

t + rT ,

with |rT | ≤
1

2T
√

T

∑T
t=p+1

(
ξ2

t + 1
)

e3
t . Since (et)t is bounded, we have rT = oPT,α,β(1). Next, observe that et is

Lipschitz in X2
t−1, . . . , X

2
t−p. Setting Yt = Ztd2

t +
e2

t
2 , we have 1

T
∑T

t=p+1

(
ξ2

t −
1
2

)
e2

t = 1
T

∑T
t=p+1 Yt and since

(Yt)t is a processes of type II, we get from Lemma 4,

E|
1
T

T∑
t=p+1

Ȳt|
2 = O

(
1
T

)
.

This entails 1
T

∑T
t=p+1 Ȳt = oPT,α,β(1). Finally, noticing that et is a bounded and Lipschitz function in(

t
T , X

2
t−1, . . . , X

2
t−p

)
, we deduce from Lemma 1,

1
T

T∑
t=p+1

E (Yt) −
1

2T

T∑
t=p+1

E

(
e1

( t
T

)2
)

= o(1),

where et(u) =
Mt(u)′g(u)+Nt(u)′h

σt(u)2 . From Lemma 1, u 7→ E
(
e1(u)2

)
is continuous. This leads to

lim
T→∞

1
T

T∑
t=p+1

(
ξ2

t −
1
2

)
e2

t =

∫ 1

0
E

(
e1(u)2

)
du = ‖(g, h)‖2H,

where the limit is in PT,α,β−probability. This achieves the proof of Proposition 2.�

J.2 Proof of Corollary 1

To prove the first assertion, it is enough to check the equality

< κ̇∗v, (g, h) >H= h′v, (J.1)

for all (g, h, v) ∈ H × Rn. Using the notations E(u) =

(
E1(u) E2(u)
E2(u)′ E3(u)

)
, with

E1(u) = E

(
M1(u)M1(u)′

σ1(u)4

)
, E2(u) = E

(
M1(u)N1(u)′

σ1(u)4

)
, E3(u) = E

(
N1(u)N1(u)′

σ1(u)4

)
,

we have q∗2(u) = E1(u)−1E2(u) and it is easy to verify the equality

Σ =

∫ 1

0

[
E3(u) − E2(u)′E1(u)E2(u)

]
du.

Then, it is easy to get (J.1) using the expression of the scalar product on H. For the second assertion, we
apply Theorem 3.11.2 of van der Vaart and Wellner (1996), using the equality ‖κ̇∗v‖H = 2v′Σ−1v. �
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K Numerical experiments for inference/testing

K.1 Example of semiparametric estimation.

We first illustrate the methods of parameters inference in the semiparametric model with constant lag co-
efficients. We consider the noise distributions ξ1 ∼ N(0, 1), t(9) (Student distribution with 9 degrees of
freedom) and t(5). These three distributions satisfy the moment assumption Eξ4(1+δ)

0 < ∞ used in Theorem
1, Theorem 3 and Theorem 4. The number of lags is fixed to p = 2 and the intercept function is defined
by a0(u) = 2 + sin(2πu). We compare the estimates obtained using the procedure described in the paper
and the plug-in estimates which are asymptotic optimal. Two sample sizes are considered: T = 500 and
T = 1500. Only one bandwidth is used and selected by the CV procedure (the same bandwidth is used for
estimating the intercept function and plug-in estimates are also computed using this initial bandwidth). Note
that the t−distributions do not satisfy the moment assumption for the asymptotic normality of the plug-in
estimator of lag coefficients (in Theorem 2, we assumed that ξ has moments of any order but our assumption
is probably not optimal). The plug-in estimator seems to have a smaller RMSE (see Table 4), even when
T = 500. Observe also that our estimates are less accurate when the noise has fatter tails. The RMSE for â0

is defined by
√

1
T

∑T
t=1 E (â0(t/T ) − a0(t/T ))2.

Table 4: RMSE for parameter estimation (notation ∗ is for the plug-in estimator)

ξ0 ∼ N(0, 1) ξ0 ∼ t(9) ξ0 ∼ t(5)

T = 500

â0 â1 â2 â0 â1 â2 â0 â1 â2
0.5446 0.0859 0.0769 0.6380 0.1104 0.1000 0.7501 0.1732 0.1430

â0,∗ ˆa1,∗ â2,∗ â0,∗ ˆa1,∗ â2,∗ â0,∗ ˆa1,∗ â2,∗
0.5068 0.0750 0.0651 0.5606 0.0949 0.0822 0.6489 0.1619 0.1167

T = 1500

â0 â1 â2 â0 â1 â2 â0 â1 â2
0.3335 0.0473 0.0440 0.3844 0.0615 0.0557 0.5181 0.1012 0.0963

â0,∗ ˆa1,∗ â2,∗ â0,∗ ˆa1,∗ â2,∗ â0,∗ ˆa1,∗ â2,∗
0.3192 0.0433 0.0385 0.3571 0.0536 0.0471 0.4365 0.0775 0.0727
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Figure 5: Estimation of a0(u) = 2 + sin(2πu) when ξ0 ∼ N(0, 1), a1 = 0.3, a2 = 0.2 and T = 1500 (the red
curve is the initial estimate and the yellow curve is the plug-in estimate)

K.2 Testing the constancy of coefficients in a tv(1) process.

We consider here a tv-ARCH model with p = 1 and ξ0 ∼ N(0, 1) or ξ0 ∼ t(9). We consider two setups.
In Setup 1, we have a0(u) = 2 + sin(2πu) and a1(u) = 0.5. In Setup 2, we have a0(u) = 1 and a1(u) =

0.5 + 0.25 × cos (2πu). Considering two levels α = 10% and α = 5%, we approximate the probability of
rejecting H0: a0 constant or H0: a1 constant. Results are reported in Table 5. Under H0, this probability has
to be close to the level α of the test. One can observe that using a t(9)− distribution for the noise does not
create size distortion. However, under the alternative H1, the t distribution entails a smaller power than for
the standard Gaussian. This suggests that the power of our tests is impacted by a fat tail noise, which is not
surprising. Reasonable powers are obtained when T = 2000, the order of the sample size used in our real
data applications.

Table 5: Approximation of the power for testing parameter constancy in tv(1) processes

Setup 1 Setup 2
T = 1000 T = 2000 T = 1000 T = 2000
a0 a1 a0 a1 a0 a1 a0 a1

ξ0 ∼ N(0, 1)
α = 5% 0.99 0.07 1 0.07 0.08 0.54 0.07 0.91
α = 10% 0.99 0.12 1 0.13 0.13 0.68 0.12 0.96

ξ0 ∼ t(9)
α = 5% 0.97 0.07 1 0.06 0.06 0.34 0.06 0.69
α = 10% 0.98 0.13 1 0.12 0.13 0.47 0.11 0.8

A comparison with the Gaussian quantiles. For T = 500 and p = 1, we consider the setup 1. When
α = 10% and b = 0.01 × `, 1 ≤ ` ≤ 30, we compare the coverage probabilities obtained using the Monte
Carlo method with the coverage probabilities using the Gaussian quantiles when α = 10% and for testing
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the constancy of the first lag coefficient. In Figure 6, one can see that the Monte Carlo method is interesting
because the coverage probabilities seem more precise and less sensitive to the bandwidth parameter if we
exclude very small bandwidths.
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Figure 6: Coverage probabilities for Gaussian inputs (left), t(9) inputs (middle) and the difference of two
independent random variables following an exponential distribution with parameter 1 (right). Dashed lines
represent the coverage probabilities obtained with the Gaussian quantiles.

K.3 Power curves for testing non time-varying coefficients in a tv(2) process

In this subsection, we simulate approximation of the power for testing H0 : a0 constant (resp. a1 constant,
a2 constant, (a1, a2) constant) when a0(u) = 2 (1 + θ sin(2πu)), a1(u) = 0.2 + θ

2 sin(2πu), a2(u) = 0.2 +
θ
2 cos(2πu) with 0 ≤ θ ≤ 0.45. The noise distribution will be either Gaussian or a student distribution with
9 degrees of freedom (we remind that Theorem 5 is only valid when Eξ8(1+δ)

0 < ∞). Figure 7 represents an
approximation of the power curves when T = 2500 and α = 10%. One can observe that a more fat tail for
the noise leads to a slightly smaller power for our tests.
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Figure 7: Power curves when the noise is Gaussian (on the left) or follows a t(9)−distribution (on the right).
The legend for the curves is: − for a0 constant, −− for (a1, a2) constant, + for a1 constant and ∗ for a2
constant.

K.4 Testing the second order dynamic in the semiparametric model

Here we assume that β =
(
a1, . . . , ap

)′
. The null hypothesis is β = 0. We use the procedure described in

the paper after choosing the bandwidth parameter b by cross-validation. We restrict our study to the case
p = 2. For the simulation setup, we consider two scenarios. In setup 1, we consider a constant intercept
a0(u) = 10−4. In setup 2, a0 is a piecewise affine function such that a0(0) = a0(0.5) = a0(1) = 10−4 and
a0(0.25) = a0(0.75) = 4 · 10−4. The noise distribution will be Gaussian, t(9), or t(5). We also consider
two sample sizes: T = 500 and T = 1000. Table 6 and Table 7 provide approximations of the coverage
probabilities. In Figure 8, approximations of some power curves are given under the alternative a1 = a1 =

θ × 0.02, with θ = 0, . . . , 6. The results seem satisfying for the three noise distributions.

Table 6: Approximation of the coverage probabilities when T = 500
Setup 1 α = 10% α = 5%

ξ0 ∼ N(0, 1) 0.92 0.95
ξ0 ∼ t(9) 0.92 0.95
ξ0 ∼ t(5) 0.91 0.94

Setup 2 α = 10% α = 5%
ξ0 ∼ N(0, 1) 0.93 0.97
ξ0 ∼ t(9) 0.92 0.95
ξ0 ∼ t(5) 0.91 0.94

Table 7: Approximation of the coverage probabilities when T = 1000
Setup 1 α = 10% α = 5%

ξ0 ∼ N(0, 1) 0.90 0.96
ξ0 ∼ t(9) 0.90 0.94
ξ0 ∼ t(5) 0.90 0.93

Setup 2 α = 10% α = 5%
ξ0 ∼ N(0, 1) 0.88 0.94
ξ0 ∼ t(9) 0.87 0.93
ξ0 ∼ t(5) 0.90 0.93
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Figure 8: Power curves for testing the second order dynamic. Setup 1 with T = 500 (top left), setup 2 with
T = 500 (top right), setup 1 with T = 1000 (bottom left), setup 2 with T = 1000 (bottom right).

K.5 Information criterion for the number of lags in tv-ARCH processes

In this subsection, we study numerically the performance of the information criterion used for selecting
the number of lags in time-varying ARCH processes. We first consider the case p = 1, with a0(u) =

2 (1 + 0.4 sin(2πu)) and a1(u) = 0.3. Two distributions are considered for the noise: the standard Gaussian
and the t(9) distribution. In Table 8, we simulate B = 2000 models for both noise distributions and three
sample sizes: T = 500, T = 1000 and T = 2000. The results are correct for large sample sizes. As for the
estimation, one observe that the performance of the criterion is sensitive to the tail of the noise distribution.
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Table 8: Percentages of models correctly fitted (CF), underfitted (UF) and overfitted (OF) for Setup 1
CF UF OF

ξ0 ∼ N(0, 1)
T = 500 88 6 6
T = 1000 97 2 1
T = 2000 99 0 1

ξ0 ∼ t(9)
T = 500 80 14 6
T = 1000 90 8 2
T = 2000 94 5 1

In a second simulation setup, we consider the case p = 0, 1, 2, using the same intercept a0 and setting
a1(u) = 0.2 + 0.2 · sin (2πu), a2(u) = 0.2 + 0.2 · cos (2πu). In this case, the lag coefficients can be arbitrary
close to zero and the true model more difficult to select. Numerical experiments are reported in Table 9.
When ξ0 ∼ t(9), large sample sizes are necessary to obtain good results. Once again, one can explain this
behavior by the difficulty of getting accurate estimates with such noise distribution tail when the sample size
is not large enough.

Table 9: Percentages of correctly fitted, underfitted and overfitted models for Setup 2
p = 0 p = 1 p = 2

CF UF OF CF UF OF CF UF OF

ξ0 ∼ N(0, 1)
T = 500 93 0 7 78 16 6 74 22 4
T = 1000 93 0 7 92 6 2 91 7 2
T = 2000 96 0 4 99 0 1 99 1 0

ξ0 ∼ t(9)
T = 500 91 0 9 66 28 6 58 37 5
T = 1000 95 0 5 83 14 3 78 20 2
T = 2000 96 0 4 94 5 1 95 4 1
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