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Multistage sampling

Principle of multistage sampling

The population U of individuals is partitioned into M big units called Pri-
mary Sampling Units (PSUs); the small units in U are called the Sec-
ondary Sampling Units (SSUs).

o First stage: a sample S; of PSUs is selected.

@ Second stage: a sample of SSUs is drawn in the selected PSUs ;.

Multistage sampling consists in three stages of sampling, or more. In case
of household surveys, a customary sampling design consists in

@ selecting a sample of municipalities (PSUs),

o selecting a sample of districts inside the selected municipalities (SSUs),

@ selecting a sample of households inside the selected districts (TSUs).
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Multistage sampling

Motivation

Multistage sampling is mainly used for practical purpose:
o Reducing the survey costs when direct sampling would lead to a
scattered sample. Using several stages of sampling enables to group
the selected units.

@ Building of the sampling frame. We only need a list of the final units
inside the selected PSUs.
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Examples

© Household surveys: selection of a sample of municipalities (PSUs), of
districts (SSUS) within, and of households (TSUs) inside (e.g., Ardilly,
2006).

@ Epidemiologic surveys: estimation of lead contamination by the selec-
tion of a sample of hospitals (PSUs), and then of children (SSUs) whose
dwellings were investigated (Lucas, 2013).

© PISA survey: in France, selection of a sample of schools (PSUs), and
of a sample of students aged 15 within (SSUs).
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Multistage sampling

Framework

We consider a finite population U = {1,..., N} of N sampling units. The
units are grouped inside N; non-overlapping subpopulations uq, ..., up,
called primary sampling units (PSUs). We are interested in estimating the
population total

Y= w= ) Y with ;=3 u

keU u; €Ur kEui

for some variable of interest y.

We denote by:
@ Y; an unbiased estimator of Y;, with design variance V; = V(YZ)

@ V; an unbiased estimator of V.
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Multistage sampling

Framework

We consider the asymptotic framework of Isaki and Fuller (1982):

@ The population U belongs to a nested sequence {U,} of finite popula-
tions with increasing sizes IV;.

o The vector of values y7; = (y1¢,...,yn:) ' belongs to a sequence {yy;}
of N;-vectors.

The subscript "t" is suppressed in the sequel.

In the population Uy = {uy,...,un,} of PSUs:
@ a first-stage sample Sy is selected according to some sampling design
p1(°),
o if u; € S, a second-stage sample S; is selected in u; by means of any
sampling design (census, stratified sampling, multistage sampling, ...).
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Assumptions

We assume:

o Invariance of the second-stage designs: the second stage of sam-
pling is independent of Sy,

e Independence of the second-stage designs: the second-stage de-
signs are independent from one PSU to another, conditionally on S7.

We will also make use of the following assumptions:

H1: Ny — oo and ny — oc.
t—o00 t—o00

H2: There exists a constant Cy such that N; Z E|Y;|* < Cy.
u; €Uy

H3: There exists a constant (3 such that IV, L Z V2 ) < Ca.
u; €EUT
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With replacement sampling of PSUs

With replacement sampling

of PSUs
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With replacement simple random sampling of PSUs

The first-stage sample S}V 2 is selected by means of simple random sampling
with replacement (SIR). The Hansen-Hurwitz estimator is

. Ni <& -
Ywr = r j;Y(j),
where
o SV is obtained in j = 1,...,ns independent draws,
@ at each draw, a PSU u(5) with associated estimator X; = }7(j).

The variance of Yyyg and an unbiased variance estimator are

A N? ) Nr—1_, 1
v (Fwr) = 5 TR St 2V
1 I I u ey
5 N? _ 1
UWR (YWR) = n—;s?x with 5%{ = p—

J=1
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With replacement sampling of PSUs

With replacement simple random sampling of PSUs

The simple form of the variance estimator is primarily due to the writing of
Ywr as a sum of independent random variables.

Under the assumptions:
H1: N — oo and n; — oo,
t—o0 t—o0

H2: there exists a constant C; such that N;* Z E|Y;|* < Cy,
u; €U
we have

2
ny - -
£ ‘N; {own (Yiwn) -V (YWR>}‘ v

A variance estimator for further stages inside the selected PSUs is not needed.
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Bootstrap for SIR of PSUs

We consider the with-replacement Bootstrap (BWR) of PSUs described in
Rao and Wu (1988). The resample (X},..., X )" is obtained by sampling
m times independently in (X,...,X,,). Let

m m
==Y X and sE=——3 (X1 X5
Tomia m=17 ’ "

J=1

Assume that (H1)-(H2) hold, and that m Rl Then (Bickel and Freed-
man, 1981) :

- N(0,1).

Using the BWR with m = ny — 1 enables to match the unbiased variance
estimator vy R <YWR) when estimating the total Y. ensA
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Without replacement sampling of PSUs

Without replacement sampling

of PSUs
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Without replacement simple random sampling of PSUs

The first-stage sample S is selected by means of simple random sampling
without replacement (SI). The Horvitz-Thompson estimator is

. ONp ..
Y= . Z Yii)s
14
7j=1
where
@ Sy is obtained in j = 1,...,n; without-replacement draws,

o at each draw, a PSU ;) with associated estimator Z; = Y(j).
The variance of Y and an unbiased variance estimator are

. N2
V()= - 11— f1)S%y, + N Z Vi
u; €EUT
. N? .
v(Y) = r (1— f1)s% —l— — Z Vi ¢ with f; = nIE/N{X

Uzesl
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Without replacement sampling of PSUs

Without replacement simple random sampling of PSUs

Since Y is a sum of dependent random variables, there is no such simple
unbiased variance estimator as for SIR sampling of PSUs.

Under the assumptions:

H1: Ny — oo and ny — oo,
t—o00 t—o00

H2: there exists a constant C such that NI_1 Z E|Y;|* < ¢y,

u; €Ur
H3: There exists a constant Cs such that N; ! Z E(V?) < Cs.
u; EUT
we have
nr N N 2
E|5s {U(Y) - V(Y)} —0.

ENSA| e
A variance estimator for further stages inside the PSUs is needed

G. Chauvet (ENSAI) Bootstrap for multistage sampling Univ. de Besancon 16 / 33



A coupling procedure between SI/SIR sampling of PSUs

A coupling procedure

between SI/SIR sampling of PSUs

G. Chauvet (ENSAI) Bootstrap for multistage sampling



A coupling procedure between SI/SIR sampling of PSUs
Motivation

We would like to prove that, when the first-stage sampling fraction f7 is
small:

e : . 5 N2 o . . .
o the simplified variance estimator vyyr(Y) = n—fsQZ is also consistent in
case of Sl sampling of PSUs,

e the BWR of PSUs is suitable for SI sampling of PSUs.

We propose a coupling method (Hajek, 1960; Thorisson, 1980) to select
jointly a with/without replacement sample of PSUs, in such a way that:

o X, ~ Z, and s% ~ 52,

, V(X —X)  vm(Z,-Z)
X 7
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A coupling procedure between SI/SIR sampling of PSUs

The coupling procedure

Step 1: draw SV Denote by S‘Ii the set of distinct PSUs in S}V 1.

SAOCS
slee
O CHO
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A coupling procedure between SI/SIR sampling of PSUs
The coupling procedure

Step 2: each time u; € S}VT, select a second-stage sample Sifj]-

QOQQ « (ONOCD
@)= O
%OQ QQ
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A coupling procedure between SI/SIR sampling of PSUs

The coupling procedure

Step 3: initialize S; with S{, and S; = Sjpy) for u; € S
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A coupling procedure between SI/SIR sampling of PSUs
The coupling procedure

Step 4: draw a complementary sample S¢, and \S; for u; € S¢.

ONOCD| &« [ONOCD
OO D O
%@Q QQ
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The coupling procedure

Suppose that the samples S}V and S} are selected according to the coupling
procedure. Then

. o2 B
E(YW{{ Y) < nr—1 (S m) (1)
V(YWR) NI -1 NI

Suppose that (H1)-(H2) hold, and that f; 2 0. Then

= =0 V(2)
E(Z - X)>=o0(n;') and ﬁtﬁol

2

Also, the simplified variance estimator vy p(Y) = —Ls% is such that:
ny

E

I{UWR(?)—UWR(YWR)}‘ — 0.

t—o00 ENSAI e
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With-replacement Bootstrap

We consider the same BWR of PSUs. Denote by
(Z3,. - Z)T
the resample obtained by sampling m times independently in (Z1,...,Z,,).

Let

7% 1 - * * 1 - * 7% ) 2
Zmsz;Zj and s7 =——Y (Z; - Z},)
]:

G. Chauvet (ENSAI) Bootstrap for multistage sampling Univ. de Besancon 24 /33



With-replacement Bootstrap

Mallows (1972) metric: let 1 < ¢ < oo and dy(e, B) = inf {E|| X — A
where the infimum is taken over all couples (X, Z) with marginal distribu-
tions « and f3.

Suppose that (H1) and (H2) hold, and that m oo o0 Then :
—00

&2 (V25 = 2), X - X)) — 0, @
di [s%, %] = 0, (3)
VIlZh = 2) _, w1y, (@

SZ L

Using the BWR with m = n; — 1 enables to match the simplified variance
estimator vy R <Y) when estimating the total Y. :
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Variance estimation

Suppose that y; is a g-vector of interest. We are interested in a parameter
0= f(uy) with py =N Z Yi,
u; €UT

where f : R? — R is differentiable with bounded partial derivatives and
f'(ny) # 0. The plug-in estimator of 6 is:

o O = f(Z) under Sl sampling of PSUs,

o Owr = f(X) under SIR sampling of PSUs.

Suppose that S}/VR and Sy are selected according to the coupling procedure

+ assumptions (H1)-(H2) hold + f; 2 0. Then :
E(|Z - X|?) = o(n7 ™),
E(6 - bwr)? = o(n).

with || - || the Euclidean norm.
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A coupling procedure between SI/SIR sampling of PSUs

Variance estimation

Suppose that the samples S}/VR and Sy are selected according to the coupling

procedure. Suppose that assumptions (H1)-(H2) hold, f; b 0Oand m —
— 00

oo. Then : e
E(|Z* = X*|1?) = o(m™") + o(n7 ), (5)
E(6* =05y p)* = o(m™") +o(ny ). (6)

This implies that
V(0*|Z:)
/\*7 H
V(QWR|X,L) Pr

If the with-replacement Bootstrap provides consistent variance estimation
for Oy g, it is also consistent for 6.
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A simulation study

A simulation study
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Simulation study

We generated 2 finite populations, each with Ny = 2,000 PSUs, so that the
CV for the sizes N; of PSUs was equal to 0 and 0.03. In each population,
we generated for any PSU w;:

Ai = A+ouy (8)

where the v;'s were generated according to a standardized normal distribu-
tion. For each SSU k € wu;, we generated a couple of values according to
the model

yie = N+ {7 (1= p)}"0 (@ e +m), (9)
yor = N+{p 11— p)}0'5a (v € + vg), (10)

so as to have
@ a coefficient of correlation approximately equal to 0.60,

@ an intra-cluster correlation coefficient equal to 0.1 (S|m|J,@KI'“
0.2 and 0.3).
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Simulation study

From each population, we selected B = 1,000 two-stage samples by:
@ Sl sampling of size ny = 20,40, 100 or 200 at the first stage,
@ systematic sampling of size ng = 5 or 10 at the second stage.
We want to estimate the variance of the substitution estimator for the pa-
rameters
R Hyl
Hy2
> ker Wik — piy1) (Yar — py2)

V2 ker Wik — ty1)* /> per Wak — py2)?

by using the BWR of PSUs. The true variance was approximated from a
separate simulation run of C' = 20,000 samples.
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Estimation of the ratio

y | RB. RS L U L+U
Pop.1 mo=5 mn;y=20 | 002 034 36 29 65
ny=40 | 0.02 024 28 33 6.1

ny=100 | 0.01 0.15 28 22 5.0

ny=200| 0.01 011 3.0 3.0 6.0

no=10 n;y=20 | 000 0.33 39 31 7.0
nyr=40 | 0.03 024 32 28 6.0

ny=100| 0.00 0.16 33 24 57

ny =200 | 0.04 0.12 23 27 5.0

Pop. 2 mo=5 mn;y=20 | 000 034 38 36 7.4
ny=40 | 0.00 022 21 3.0 5.1

ny=100| 0.00 0.15 25 25 5.0

ny=200| 0.02 0.11 34 29 6.3

ng=10 n;y=20 [-0.01 033 37 26 6.3
ny=40 | 0.00 024 32 35 6.7

ny=1001| 0.02 0.16 33 22 55

ny=200| 0.02 0.11 26 26 5.2




Estimation of the coefficient of correlation

| | RBL RS L U L+U]

Pop.1 ng=5 mn;=20 |00l 041 38 32 7.0
ny=40 | 000 029 29 28 57

ny=100| 0.02 019 32 26 58

n;=200| 001 014 28 21 49

ng=10 n;=20 [-0.01 037 33 32 65
ny=40 | 001 027 25 3.0 55

n; =100 | 0.05 0.19 20 26 46

n;=200| 003 013 22 24 46

Pop. 2 ng=5 mn;=20 [-001 041 42 32 74
n;g=40 | 002 031 26 29 55

n;=100 | 0.02 019 3.0 2.9 59

n;=200| 001 014 22 27 49

ng=10 n;=20 [ 0.01 040 29 37 6.6
ny=40 | 000 028 41 28 6.9

n; =100 | 0.02 017 29 24 53

n; =200 004 013 25 34 59
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